第六章 图
总框架
本章的主要内容是:
图的逻辑结构
图的存储结构及实现
图的连通性
最小生成树
最短路径
AOV网与拓扑排序
AOE网与关键路径
一、图的逻辑结构
1、图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:
G=(V,E)
其中:G表示一个图,V是图G中顶点的集合,E是图G中顶点之间边的集合。
2、如果图的任意两个顶点之间的边都是无向边,则称该图为无向图。否则称为有向图。
3、简单图:在图中,若不存在顶点到其自身的边,且同一条边不重复出现。
4、图的基本术语:
(1)邻接、依附。
(2)顶点的度、入度、出度。
(3)有向完全图、无向完全图。
(4)稠密图、稀疏图。
(5)路径、路径长度、回路。
(6)简单路径、简单回路。
(7)子图。
(8)连通图、连通回路。
(9)强连通图、强连通分量
5、
非带权图——路径上边的个数
带权图——路径上各边的权之和
6、生成树:n个顶点的连通图G的生成树是包含G中全部顶点的一个极小连通子图。
7、图的遍历操作
图的遍历是从图中某一顶点出发,对图中所有顶点访问一次且仅访问一次。
在图中,任何两个顶点之间都可能存在边,顶点是没有确定的先后次序的,所以,顶点的编号不唯一。
#深度优先遍历
⑴ 访问顶点v;
⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;
⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。
#广度优先遍历
⑴ 访问顶点v;
⑵ 依次访问v的各个未被访问的邻接点v1, v2, …, vk;
⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。
二、图的存储结构及实现
1、
用一个一维数组存储图中顶点的信息
用一个二维数组(称为邻接矩阵)存储图中各顶点之间的邻接关系。
2、邻接矩阵存储无向图的类
const int MaxSize=10;
template <class T>
class Mgraph{
public:
MGraph(T a[ ], int n, int e );
~MGraph( )
void DFSTraverse(int v);
void BFSTraverse(int v);
……
private:
T vertex[MaxSize];
int arc[MaxSize][MaxSize];
int vertexNum, arcNum;
};
3、构造函数
template <class T>
MGraph::MGraph(T a[ ], int n, int e) {
vertexNum=n; arcNum=e;
for (i=0; i<vertexNum; i++)
vertex[i]=a[i];
for (i=0; i<vertexNum; i++) //初始化邻接矩阵
for (j=0; j<vertexNum; j++)
arc[i][j]=0;
for (k=0; k<arcNum; k++) {
cin>>i>>j; //边依附的两个顶点的序号
arc[i][j]=1; arc[j][i]=1; //置有边标志
}
}
4.深度优先遍历
int visited[MaxSize];
template <class T>
void MGraph::DFSTraverse(int v){
cout<<vertex[v]; visited [v]=1;
for (j=0; j<vertexNum; j++)
if (arc[v][j]==1 && visited[j]==0)
DFSTraverse( j );
}
5.广度优先遍历
int visited[MaxSize];
template <class T>
void MGraph::BFSTraverse(int v){
front=rear=-1; //假设采用顺序队列且不会发生溢出
int Q[MaxSize]; cout<<vertex[v]; visited[v]=1; Q[++rear]=v;
while (front!=rear) {
v=Q[++front];
for (j=0; j<vertexNum; j++)
if (arc[v][j]==1 && visited[j]==0 ) {
cout<<vertex[j]; visited[j]=1; Q[++rear]=j;
}
}
}
6、增加一个顶点
template <class T>
void MGraph<T>::InsertVex(int num,T name) {
if ( num<0|| num>vertexNum) throw "位置";
int row, col, numv;
numv = vertexNum-1;
vertexNum++;
for(int i=numv;i>=num;i--) vertex[i++]=vertex[i];
vertex[num]=name;
for(row=numv;row>=0;row--) {所有行上num列之后的列后移,增加一列,
for(col=numv;col>=num;col--) arc[row][col+1]=arc[row][col];
arc[row][num]=0;
}
for(row=numv;row>=num;row--)
for(col=0;col<=numv+1;col++) arc[row+1][col]=arc[row][col];
for(col=0;col<vertexNum;col++) arc[num][col]=0;
}
7、删除一个顶点
template <class T>
void MGraph<T>::InsertVex(int num,T name) {
if ( num<0|| num>vertexNum) throw "位置";
int row, col, numv;
numv = vertexNum-1;
vertexNum++;
for(int i=numv;i>=num;i--) vertex[i++]=vertex[i];
vertex[num]=name;
for(row=numv;row>=0;row--) {所有行上num列之后的列后移,增加一列,
for(col=numv;col>=num;col--) arc[row][col+1]=arc[row][col];
arc[row][num]=0;
}
for(row=numv;row>=num;row--)
for(col=0;col<=numv+1;col++) arc[row+1][col]=arc[row][col];
for(col=0;col<vertexNum;col++) arc[num][col]=0;
}
8、插入一条边
template <class T>
void MGraph<T>::InsertArc(int i, int j)
{
if ( i>MaxSize|| j>MaxSize) throw "位置";
arc[i][j]=1;
arc[j][i]=1;
}
9、邻接表有两种结点结构:顶点表结点和边表结点。
vertex:数据域,存放顶点信息。
firstedge:指针域,指向边表中第一个结点。
adjvex:邻接点域,边的终点在顶点表中的下标。
next:指针域,指向边表中的下一个结点。
struct ArcNode{
int adjvex;
ArcNode *next;
};
template <class T>
struct VertexNode{
T vertex;
ArcNode *firstedge;
};
const int MaxSize=10; //图的最大顶点数
template <class T>
class ALGraph
{
public:
ALGraph(T a[ ], int n, int e);
~ALGraph;
void DFSTraverse(int v);
void BFSTraverse(int v);
………
private:
VertexNode adjlist[MaxSize];
int vertexNum, arcNum;
};
template <class T>
ALGraph::ALGraph(T a[ ], int n, int e)
{
vertexNum=n; arcNum=e;
for (i=0; i<vertexNum; i++)
{
adjlist[i].vertex=a[i];
adjlist[i].firstedge=NULL;
}
for (k=0; k<arcNum; k++)
{
cin>>i>>j;
s=new ArcNode; s->adjvex=j;
s->next=adjlist[i].firstedge;
adjlist[i].firstedge=s;
}
}
template <class T>
void ALGraph::DFSTraverse(int v){
cout<<adjlist[v].vertex; visited[v]=1;
p=adjlist[v].firstedge;
while (p!=NULL) {
j=p->adjvex;
if (visited[j]==0) DFSTraverse(j);
p=p->next;
}
}
template <class T>
void ALGraph::BFSTraverse(int v){
front=rear=-1;
cout<<adjlist[v].vertex; visited[v]=1; Q[++rear]=v;
while (front!=rear) {
v=Q[++front]; p=adjlist[v].firstedge;
while (p!=NULL) {
j= p->adjvex;
if (visited[j]==0) {
cout<<adjlist[j].vertex; visited[j]=1; Q[++rear]=j;
}
p=p->next;
}
}
}
10、利用两个一维数组
一个数组存储顶点信息,
另外一个数组存储边及其权
数组分量包含三个域:边所依附的两个顶点,权值
各边在数组中的次序可以任意。
三、普里姆算法
基本思想:
设G=(V, E)是具有n个顶点的连通网,
T=(U, TE)是G的最小生成树,
T的初始状态为U={u0}(u0∈V),TE={ },
重复执行下述操作:
在所有u∈U,v∈V-U的边中找一条代价最小的边(u, v)并入集合TE,同时v并入U,直至U=V。
Void prim(MGraph G){
for(int i=1;j<G.vertexNu;i++){
lowcost[i]=G.arc[0][i];adjvex[i]=0;
}
lowcost[0]=0;
for(i=1;i<G.vertexNum;i+++){
k=MinEdge(lowcost,G.vertexNum)
cout<<K<<adjvex[k]<<lowcost[k];
lowcost[k]=0;
for(j=1;j<G.vertexNum;j++)
if((G.arc[k][j]<lowcost[j]){
lowcost[j]=G.arc[k][j];
arcvex[j]=k;
}
}
}
四、克鲁斯卡尔算法
思想:
-
初始化:U=V; TE={ };
-
循环直到T中的连通分量个数为1
2.1 在E中寻找最短边(u,v);
2.2 如果顶点u、v位于T的两个不同连通分量,则
2.2.1 将边(u,v)并入TE; 2.2.2 将这两个连通分量合并为一个;
2.3 在E中标记边(u,v),使得(u,v)不参加后续最短边的选取;
int main(){
int arcNum, int vertexNum;
EdgeNode *edge;
int *parent;
cout<<"please input the number of vertexNum:"; cin>>vertexNum;
cout<<"please input the number of edges:"; cin>>arcNum;
edge=new EdgeNode[arcNum]; parent=new int[vertexNum];
for(int i=0;i<arcNum;i++) {
cout<<"Please input the edges:";
cin>>edge[i].from>>edge[i].to>>edge[i].weight;
}
sort(edges, G); //对边集数组进行堆排序,时间复杂性为O(eloge)
for (i=0;i<vertexNum;i++)
parent[i]=-1; //每个节点分属于不同的集合
int k=0,begin,end,count=0;
cout<<"next is the MST :"<<endl;
for (k=0;k<arcNum;k++) {
begin=edge[k].from; end=edge[k].to;
int m,n;
m=Find(parent,begin); n=Find(parent,end);
if(m!=n) {
cout<<begin<<","<<end<<","<<edge[k].weight<<endl;
parent[n]=m;
count++;
if(count==vertexNum-1) break;
}
}
return 0;
}
int Find(int *parent, int node)
{
int f;
f=node;
while(parent[f]>-1)
f=parent[f];
return f;
}
五、迪杰斯特拉算法—单源点最短路径问题
const int MAX=1000;
void Dijkstra(MGraph g, int v){
for ( i =0; i<g.vexnum ; i++){
dist[i]=g.arcs[v][i];
if ( dist[i]!= MAX)
path [i]=g.vertex[v]+g.vertex[i];
else
path[i]=“”;
}
S[0]=g.vertex[v];
num=1;
While (num<g.vextexNum){
k=0;
for(i=0;i<G.vertexNum;i++)
if((dist[i]<dist[k]) k=i
cout<<dist[k]<<path[k];
s[num++]=G.vertex[k];
for(i=0;i<G.vertexNum;i++)
if(dist[k]+g.arc[k][i]<dist[i] {
dist[i]=dist[k]+g.arc[k][i];
path[i]=path[k]+g.vertex[i];
}
}
}
六、弗洛伊德算法—每一对顶点之间的最短路径
void Floyd(MGraph G)
{
for (i=0; i<G.vertexNum; i++)
for (j=0; j<G.vertexNum; j++)
{
dist[i][j]=G.arc[i][j];
if (dist[i][j]!=∞)
path[i][j]=G.vertex[i]+G.vertex[j];
else path[i][j]="";
}
for (k=0; k<G.vertexNum; k++)
for (i=0; i<G.vertexNum; i++)
for (j=0; j<G.vertexNum; j++)
if (dist[i][k]+dist[k][j]<dist[i][j]) {
dist[i][j]=dist[i][k]+dist[k][j];
path[i][j]=path[i][k]+path[k][j];
}
}
七、AOV网与拓扑排序
AOV网:在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,称这样的有向图为顶点表示活动的网,简称AOV网。
void TOpSort(){
int top=-1, count=0;
for(int i=0;i<vertexnum;i++)
if(adjlist[i].in==0) s[++top]=i;
while(top!=-1){
j=s[top--]; cout <<adjlist[j].vertext; count++;
p=adjlist[j].firstedge;
while(p!=NULL){
k=p->adjvex; adjlist[k].in--;
if(adjlist[k].in==0) s[top++]=k;
p=p->next;
}
}
If (count<vertexNum) cout<<“有回路”;
}
八、AOE网与关键路径
在一个表示工程的带权有向图中,用顶点表示事件,用有向边表示活动,边上的权值表示活动的持续时间,称这样的有向图叫做边表示活动的网,简称AOE网。AOE网中没有入边的顶点称为始点(或源点),没有出边的顶点称为终点(或汇点)。
关键路径:在AOE网中,从始点到终点具有最大路径长度(该路径上的各个活动所持续的时间之和)的路径称为关键路径。
关键活动:关键路径上的活动称为关键活动。
要找出关键路径,必须找出关键活动, 即不按期完成就会影响整个工程完成的活动。
首先计算以下与关键活动有关的量:
1.事件的最早发生时间ve[k]
2.事件的最迟发生时间vl[k]
3.活动的最早开始时间e[i]
4.活动的最晚开始时间l[i]
最后计算各个活动的时间余量 l[k] - e[k],时间余量为0者即为关键活动。