显著性目标检测之Stacked Cross Refinement Network for Edge-Aware Salient Object Detection

本文提出了一种新颖的边缘感知显著目标检测方法——堆叠交叉细化网络(SCRN),它通过交叉细化单元(CRU)在显著目标检测和边缘检测之间双向传递信息,逐步改进特征。实验表明,SCRN在多个数据集上表现出色,优于现有算法。
摘要由CSDN通过智能技术生成

在这里插入图片描述

摘要

现状:现有的算法大多集中于聚合预训练的卷积神经网络的多层次特征。此外,一些人尝试利用边缘信息进行辅助训练。而现有的边缘感知模型设计的是单向框架,仅利用边缘特征来改善分割特征

提出新框架:作者研究了二值分割与边缘映射之间的相互关系,指出边缘映射中的边界区域是对应分割映射中目标区域的合适子集。受此启发,提出了一种新颖的边缘感知显著目标检测方法——堆叠交叉细化网络(SCRN),该方法在两个任务之间双向传递信息,同时细化多层边缘和分割特征。

  • 提出了一种有效的交叉细化单元(CRU),在显著目标检测和边缘检测两个任务之间双向传递信息。在CRU中,设计了两个特定方向的集成操作,以同时细化两个任务的多层次特征;
  • 提出了一种新的显著目标检测框架——堆叠交叉细化网络(SCRN),该框架通过叠加多个cru来逐步改进两组多层次的特征。结合典型的u网结构,我们的框架分割突出的目标从图像精确。

网络详解

前边已经简单介绍了网络组成,接下来将要详细的介绍每个模块的原理以及构造方法
整体网络架构:
在这里插入图片描述
在此之前,先了解以下边缘和分割的相互关系:
突出目标检测是一个像素级二值分类问题。定义一个真值分割映射Ms = {Msp },其中p表示图像的一个像素,N为图像中像素的个数。那么对应的边映射可以定义为Me。对于一个图像,Ms突出了整个突出的物体,而Me只突出突出的物体的边缘。因此,Me中的边缘区域就是Ms中目标区域的合适子集,这个关系可以表示为:在这里插入图片描述

特征提取

模型基于Res-Net50。从骨干网的4个残块中得到4个层次特征,定义为F = {Fi,i = 1,2,3,4}。给定一幅大小为H×W的图像,每个特征的大小为H /(2i+1)×W /(2i+1)×C。C为某特征的通道数,等于2i+7。对于每一层,使用两个1×1卷积层,为两个任

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值