2007---选太子问题

问题描述:

某皇帝有2m个儿子,现在要从中选出一个做太子,
皇帝不知道该把那一个皇子立为太子,于是决定用下面的方法来选出太子,
设每个太子的编号分别1(0)、2、3、…、2m(2m-1),按顺时针方向站成一个圆圈,
现在从1(0)号太子开始按顺时针方向数,数到第n(n-1)个人,把他淘汰出局,
然后从他的下一个人开始上述过程,当第m个人被淘汰时,转变方向继续从1开始数,
重复上述过程,最后剩下的皇子将被立为太子。现在请你写一个程序,
计算出几号皇子将被立为太子。
输入数据:输入两个正整数m n
输出数据:输出太子的编号
Sample input
3 3
Sample output
1

代码:


#include <stdio.h>
#include <stdlib.h>

//此题和约瑟夫问题类似,在这里我们采用双向循环链表来实现首先定义节点类型。
typedef struct Node//定义结点

{
	int data;
	struct Node* prior;
	struct Node* next;
}sonNode;

sonNode* Create()//创建一个头结点
{
	sonNode *p;

	if(!(p = (sonNode*)malloc(sizeof(sonNode))))
	{
		printf("Not enough!\n");
		exit(0);
	}


	p->data = 0;
	p->prior = p;
	p->next = p;

	return p;

}

void Initiate(sonNode* son, int n)
{
	sonNode *p, *q;
	int k = 0;

	q = son->next;

	while(k < n - 1)
	{
		if(!(p = (sonNode*)malloc(sizeof(sonNode))))
		{
			printf("Not enough!\n");
			exit(0);
		}
		p->data = k + 1;
		q->next = p;
		p->prior = q;
		p->next = q;//再次形成一个双向循环链表
		q = p;
		k++;
	}
	q->next = son;
	son->prior = q;
}

int Delete(sonNode* son, int m, int n)
{
	sonNode *p, *q;
	int i = 1, j = 0, flag = 1;

	p = son;
	while(flag)
	{
		i = 1;
		j = 0;
		while(j < m && flag)
		{
			if(i < n)
			{
				p = p->next;
				i++;
			}
			else
			{
				p->prior->next = p->next;//删除喊n的结点
				p->next->prior = p->prior;
				q = p;
				p = p->next;
				free(q);
				j++;
				i = 1;
				if(p->next == p)
					flag = 0;
			}
		}

		i = 1;
		j = 0;
		while(j < m && flag)
		{
			if(i < n)
			{
				p = p->prior;
				i++;
			}
			else
			{
				p->prior->next = p->next;
				p->next->prior = p->prior;
				q = p;
				p = p->prior;
				free(q);
				j++;
				i = 1;
				if(p->prior == p)
					flag = 0;
			}
		}
	}

	return p->data;
}

int main()
{
	sonNode *son, *p;
	unsigned int m, n;

	scanf("%d %d", &m, &n);
	if(m == 0 || n == 0)
	{
		printf("Error!\n");
		exit(0);
	}

	son = Create();//首先创建一个头结点,收尾相连
	Initiate(son, 2 * m);//然后初始化2m个结点
	printf("%d\n", Delete(son, m, n));//输出最后结果

return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值