HHU寒假训练4

A - Neon Sign

题意:n个点的完全图,每个顶点与其余顶点边的颜色分蓝、红两种。要求三边一样颜色的三角形的个数。

考虑暴力O(n^3)会T,所以试了一发反解(两边颜色不同就ans–),还是T了
题解:对于由不同色边组成的三角形,只可能有两条边同色,一条边不同色的情况。如果枚举一遍每一个点,记录从这个点连出的边中有多少条边的颜色不一样,总和记做 sum,那么对于任意一个不同色三角形,它的那条不同色边的两个端点会各算一次。所以不同色三角形个数就为sum/2。

#include <iostream>
#include <cstring>
using namespace std;

int n;
int a[1005],b[1005];

int main(){
	
	ios::sync_with_stdio(0);
	int T;
	cin>>T;
	while (T--){
		int n,x;
		cin>>n;
		memset(a,0,sizeof(a));
		memset(b,0,sizeof(b));
		int ans=0;
		for (int i=1; i<=n-1; i++){
			for (int j=i+1; j<=n; j++){
				cin>>x;
				if (x) {
					a[i]++;
					a[j]++;
				}
				else {
					b[i]++;
					b[j]++;
				}
			}
		}
		for (int i=1; i<=n; i++){
			ans+=a[i]*b[i];
		}
		ans=n*(n-1)*(n-2)/6-ans/2;
		cout<<ans<<endl;
		
		
	}
	return 0;
} 

B - The Sum of the k-th Powers

C - Biorhythms

题意:人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。、

题解:中国剩余定理模版题,因为这题补了这方面的知识,详见中国剩余定理

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;

ll a[4];
ll m[4]={23,28,33};
const int mod=21252;
ll extend_gcd(ll a, ll b, ll &x, ll &y) {
	ll res=a;
	if (b!=0) {
		res=extend_gcd(b,a%b,y,x);
		y-=(a/b)*x;
	} else {
		x=1;
		y=0;
	}
	return res;
}

ll china(int len, ll *m, ll *a) {
	ll M=1,w,d,x,y,ret=0;
	for (int i=0; i<len; i++) M*=m[i];
	for (int i=0; i<len; i++) {
		w=M/m[i];
		d=extend_gcd(m[i],w,x,y);
		ret=(ret+y*w*a[i])%M;
	}
	return (M+ret%M)%M;
}


int main() {

	//ios::sync_with_stdio(0);
	ll d;
	int cnt=1;
	while (cin>>a[0]>>a[1]>>a[2]>>d) {
		if(a[0]==-1 && a[1]==-1 && a[2]==-1 && d==-1)
			break;
		ll ans=(china(3,m,a)-d)%mod;
		if (ans<=0) ans+=mod;
		printf("Case %d: the next triple peak occurs in %lld days.\n",cnt++,ans);
	}
	return 0;
}

D - The Rotation Game

E - Strange Way to Express Integers

题意:给出k组 a r 每组代表 x ≡ r (mod a)

题解:(不互质)扩展中国剩余定理其实跟中国剩余定理没关系
详见扩展中国剩余定理

#include <iostream>
#include <cstdio>

typedef long long ll;
using namespace std;


ll m[60000],a[60000];
ll gcd(ll a,ll b){
    return b?gcd(b,a%b):a;
}

ll extend_gcd(ll a, ll b, ll &x, ll &y) {
	ll res=a;
	if (b!=0) {
		res=extend_gcd(b,a%b,y,x);
		y-=(a/b)*x;
	} else {
		x=1;
		y=0;
	}
	return res;
}

ll exchina(ll n) {
	ll m1=m[0],a1=a[0];
	ll m2,a2,k1,k2,x0,g,c;
	ll lcm=m[0];
	for(int i=1; i<n; i++) {
		m2=m[i];
		a2=a[i];
		c=a2-a1;
		g=extend_gcd(m1,m2,k1,k2);
		lcm=lcm*m[i]/gcd(lcm,m[i]);
		if(c%g) return -1;
		x0=k1*c/g;
		ll t=m2/g;
		x0=(x0%t+t)%t;
		a1+=m1*x0;
		m1=t*m1;
	}
	if (a1==0){
		a1=1;
		for (int i=0; i<n; i++)
			a1=a1*m[i]/gcd(a1,m[i]);
	}
	return a1;
}


int main() {

	ios::sync_with_stdio(0);
	ll n;
	while (cin>>n) {
		for (int i=0; i<n; i++) {
			cin>>m[i]>>a[i];
		}
		if (n==1) {
			cout<<a[0]<<endl;
			continue;
		}
		ll ans=exchina(n);
		cout<<ans<<endl;
	}
	return 0;
}

F - Revenge of Fibonacci

字典树+高精度
题意:输入一个斐波那契数的前缀,求开头与所给前缀相同的最小斐波那契数的编号。

题解:题面给出最多查询位数是 40 位,为保证计算精度,每次计算取出前
50 位前缀。我们可以在处理询问前,先计算出前100000 个斐波那契数列的值并
存储,用字典树存储,加速前缀的查询效率,判断是否为前缀。
这题让我知道了关闭流同步会导致wa

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
const int maxn=8e6+5;
int nx[8000000][15];
int ed[8000000];
int cnt=1;
string sum(string a,string b) {
	if (a.size()<b.size())
		swap(a,b);
	int i,j;
	for (i=a.size()-1,j=b.size()-1; i>=0; i--,j--) {
		a[i]=(char)(a[i]+(j>=0?b[j]-'0':0));
		if (a[i]-'0'>=10) {
			a[i]=(char)((a[i]-'0')%10+'0');
			if(i) a[i-1]++;
			else a='1'+a;
		}
	}
	return a;
}

void insert(string s, int tol){
	int pos=1;
	int len=s.size();
	ed[pos]=min(ed[pos],tol);
	for (int i=0; i<len; i++){
		int t=s[i]-'0';
		if (!nx[pos][t]) nx[pos][t]=++cnt; 
		pos=nx[pos][t];
		ed[pos]=min(ed[pos],tol);
	}
}

bool find(string s){
	int pos=1;
	int len=s.size();
	for (int i=0; i<len; i++){
		int t=s[i]-'0';
		if (!nx[pos][t]) return false;
		pos=nx[pos][t];
	}
	cout<<ed[pos]-1<<endl;
	return true;
}

int main() {

	//ios::sync_with_stdio(0);
	int x;
	cin>>x;
	string a="0",b="1";
	memset(ed,0x3f,sizeof(ed));
	insert(a,0);
	insert(b,1);
	for(int i=2; i<=100000; i++) {
		string tmp=sum(a,b);
		insert(tmp,i);
		if(tmp.length()>50) {
			tmp=tmp.substr(0,tmp.length()-1);
			b=b.substr(0,b.length()-1);
		}
		a=b;
		b=tmp;
	}
	for (int i=1; i<=x; i++) {
		printf("Case #%d: ",i);
		string s;
		cin>>s;
		if (s=="1") {
			puts("0");
			continue;
		}
		if (!find(s)) puts("-1");
	}
	return 0;
}

G - Counting Stars

H - Jacobi symbol

题意:求二次剩余 J(a,p)

题解:总结了一下二次剩余相关定理,详见二次剩余

#include <iostream>
using namespace std;
typedef long long ll;

const int maxn=1e6+5;
ll mod_pow(ll x, ll n, ll mod){
	ll res=1;
	while (n>0){
		if (n&1) res=res*x%mod;
		x=x*x%mod;
		n>>=1;
	}
	return res%mod;
}

int p[maxn]; 
bool isprime[maxn];
int cnt=0; 
void sieve(){
    for(int i=0;i<=maxn;i++) isprime[i]=true;
	isprime[0]=isprime[1]=false;
	for(int i=2; i<=maxn; i++){
        if(isprime[i]){
            p[cnt++]=i;
            for(int j=2*i;j<=maxn;j+=i){
                isprime[j]=false;
            }
        }
    }
}

int getans(int a, int m){
	if (a%m==0) return 0;
	return mod_pow(a,(m-1)/2,m)==1?1:-1;
}

int main(){
	
	ios::sync_with_stdio(0);
	cin.tie(0); 
	int x,n;
	sieve();
	while (cin>>x>>n){
		int ans=1;
		if (!isprime[n]){
			for (int i=0; i<cnt && p[i]<=n; i++){
				if (n%p[i]) continue;
				int tol=0;
				while (n%p[i]==0){
					tol++;
					n/=p[i];
				}
				int t=getans(x,p[i]);
				if (t==-1 && tol%2==0) t=1;
				ans*=t;
			}	
		}
		else ans=getans(x,n);
		cout<<ans<<endl;
	}
	return 0;
} 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值