cf Pluses everywhere 线性组合数

题目链接

题意:

在一串数字中加入K个+号,如同正常的算术表达式,+号两边必须有数字,数字可以是0,然后计算所有可能的算术表达式的和。

数据量很大,所以要用到排列组合的方法。

字符串数字

a1a2a3a4a5a6a7a8

我们从前往后,从第1位起,使他的长度为2,此时它可以存放的位置为5,因为a2后面肯定要放一位,所以k变为k-1,后面的每一个位置都是选择;从第2位起,使他的长度为2,a3后面肯定要放一位,k变为k-1,此时后面的4个位置都可以选择,并且a1后面也可以选择,所以他可以选择的位置还是5个,依次类推,都是这种情况。

但是到a7时发生了变化,a7只有前面的6个位置可以选择,并且此时k是不变的,因为a8后面不需要放+号来确定他是两位数;

所以我们来总结下规律,用m代表第几位,当m<n-i+1时,组合数为C(n-i-1)(k-1),当m=n-i+1时,组合数为C(n-i)(k)。

然后我们可以式子总结一下,不在一个一个数字的计算,而是一个长度一个长度的计算,当长度为1时,(a1+a2+a3+a4+a5+a6+a7)*C(n-2)(k-1)+(a8)*C(n-1)(k);

以此类推得到公式:(a1+a2+a3+...+an-i)*C(n-i-1)(k-1)+a[n-i+1]*C(n-1)(k)*10^(i-1);

计算组合数时,要用到一个逆元,这样计算会很快

C(n)(m)=n! / (m!*(n-m)!)

1 求1-n的阶乘放到Jc数组里

2 求Jc[m]的逆元存入x1;

3 Jc[n]*x1%mod存入x2(x2=n! / m!%mod);

4 求Jc[n-m]的逆元存入x3;

5 C(n)(m)的值为x2*x3%mod;

可以用扩展欧几里得或者快速幂求逆元

这道题的取余真的要搞死我!!!!!!如果不是在cf里可以看到错误样例,我可能已经wa到死了orz

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#define ll long long
const ll mod=1e9+7;
using namespace std;
char s[100010];
ll jc[100010],a[100010];
ll inv(ll a)   //快速幂求逆元
{
    ll b=mod-2;
    ll ans=1;
    while(b)
    {
        if(b&1)
            ans=(ans%mod*(a%mod))%mod;
        a=(a%mod*(a%mod))%mod;
        b>>=1;
    }
    return ans%mod;
}
void jiecheng(ll n)  //求阶乘
{
    ll i=2;
    jc[1]=1;
    while(i<=n)
    {
        jc[i]=(jc[i-1]*(i%mod))%mod;
        i++;
    }
}
int main()
{
    ll n,k;
    while(~scanf("%lld %lld",&n,&k))
    {
        scanf("%s",s);
        a[0]=0;
        ll maxx=0,in=1;
        for(ll i=0; i<n; i++)
            a[i+1]=(s[i]-'0'+a[i])%mod;
        if(k==0)
        {
            for(int i=n-1; i>=0; i--)
            {
                maxx+=(s[i]-'0')*in;
                in*=10;
            }
            printf("%lld\n",maxx%mod);
        }
        else
        {
            jiecheng(n);
            for(ll i=1; i<=n-k; i++)
            {
                ll x1,x2,x3,x,y1,y2,y3,y;
                x1=inv(jc[k-1])%mod;
                x2=jc[n-1-i]*x1%mod;
                x3=inv(jc[n-i-k])%mod;
                x=x2*x3%mod;
                if(x==0)
                    x=1;
                y1=inv(jc[k])%mod;
                y2=jc[n-i]*y1%mod;
                y3=inv(jc[n-i-k])%mod;
                y=y2*y3%mod;
                if(y==0)
                    y=1;
                maxx=(maxx%mod+(in*(x*a[n-i]%mod+(s[n-i]-'0')*y%mod)%mod)%mod)%mod;
                in=10*in%mod;
            }
            printf("%lld\n",maxx);
        }
    }
}

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值