卷积和神经网络有什么关系?

如上一段所述,卷积可以提取特征,但对于真实世界当中的大规模图片库,我们并不知道哪个局部特征有效,我们还是希望通过训练神经网络,自动学习出来,怎么做呢?还得用到前面学到的BP算法,但现在的问题是卷积和神经网络有什么关系呢?看下面两个图可以知道,其实卷积的运算就是相乘之后求和,和神经网络效果是一样的。卷积核和卷积结果分别对应着神经网络中的参数和隐藏层结果。这样就回到前面所学的BP算法了,做法是一样的,先初始化参数,再通过训练使得误差越来越小。

更多请见:http://www.mark-to-win.com/tutorial/mydb_ConvoluNeural_RelationConvolutionNeural.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值