基本原理
- 比较相邻的元素,如果第一个比第二个大,就交换他们两个。
- 对每一对相邻元素做同样的工作,执行完毕后,找到第一个最大值。
- 重复以上的步骤,每次比较次数 - 1,直到不需要比较。
- 注意边界的判断,可以代入几个简单的数进行验证。
- 优化方法:可以设置一个哨兵并置为 0 ;每一趟排序后若有变化,将哨兵置为 1 ,继续下一趟。当某一趟排序后哨兵仍为 0 ,意味着这一趟没有数据交换,即剩下的元素已经有序,可以跳出循环停止,防止继续的无效匹配。
通过这种方法,我们可以得到以下排序过程:
经过分析,我们可以得到元素个数、排序轮数和对比次数之间的数学关系。这样就找到了代码的逻辑关系:
- 排序总轮教数= 元素个数 - 1(可以设置哨兵优化)。
- 每轮对比次数 = 元素个数 - 排序轮数 - 1。
代码实现
/*
冒泡排序
*/
#include <iostream>
#include <time.h>
using namespace std;
typedef int ElemType;
// 交换顺序
void swap(ElemType &a, ElemType &b) {
ElemType temp = a;
a = b;
b = temp;
}
// 冒泡排序
void BubbleSort(ElemType arr[], int len) {
for (int i = 0; i < len - 1; i++) {
for (int j = len - 1; j > i; j--) {
if (arr[j - 1] > arr[j]) {
swap(arr[j - 1], arr[j]);
}
}
}
}
// 优化方法
void BubbleSort1(ElemType arr[], int len) {
int flag;
for (int i = 0; i < len - 1; i++) {
flag = 0;
for (int j = len - 1; j > i; j--) {
if (arr[j - 1] > arr[j]) {
swap(arr[j - 1], arr[j]);
flag = 1;
}
}
if (flag = 0) { // 这一趟没有交换,意味着剩下的已经有序
break;
}
}
}
int main() {
int len = 10;
ElemType arr[len] = {};
srand(time(NULL));
for (int i = 0; i < len; i++) {
arr[i] = rand() % 100; // 随机生成
cout << arr[i] << ' ';
}
cout << endl;
BubbleSort1(arr, len);
for (int i = 0; i < len; i++) {
cout << arr[i] << ' ';
}
}