HDU 4251 【线段树+dp】
题意: 给你一个长度为n的序列,找出最长上升子序列而且相邻元素之间的下标差值大于d,输出最长的.
思路: 一看是个LIS,但是这里要求下标大于d,改写dp之后也是O(n^2)。
- 1.if(a[i]>a[j]&&i-j>d) dp[i]=max(dp[i],dp[j]+1);
- 2.从dp方程可以看出来,我们如果要减少复杂度,就要优化第二个for循环,log去求max,我们考虑用线段树优化dp,维护一个dp最大值。每次查询比它小最大的那个。
- 3.i-j>d延迟更新就哦了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,d;
const int maxn=1e5+5;
int b[maxn],dp[maxn];
struct node
{
int l,r,ma;
} a[maxn<<2];
void pushup(int i)
{
a[i].ma=max(a[i*2+1].ma,a[i*2].ma);
}
void build(int i,int l,int r)
{
a[i].l=l,a[i].r=r,a[i].ma=0;
if(l==r)
return ;
int mid=(l+r)/2;
build(i*2,l,mid);
build(i*2+1,mid+1,r);
}
void update(int i,int l,int r,int pos,int val)
{
if(l==r)
{
a[i].ma=val;
return ;
}
int mid=(l+r)/2;
if(pos<=mid)
update(i*2,l,mid,pos,val);
else
update(i*2+1,mid+1,r,pos,val);
pushup(i);
}
int query(int i,int l,int r,int L,int R)
{
if(R<L)
return 0;
if(L<=l&&R>=r)
{
return a[i].ma;
}
int mid=(l+r)/2;
int ans=0;
if(L<=mid)
ans=max(ans,query(i*2,l,mid,L,R));
if(R>mid)
ans=max(ans,query(i*2+1,mid+1,r,L,R));
return ans;
}
int main()
{
while(~scanf("%d%d",&n,&d))
{
memset(dp,0,sizeof dp);
int ma=0;
for(int i=1; i<=n; i++)
{
scanf("%d",&b[i]);
b[i]++;
ma=max(ma,b[i]);
}
build(1,1,ma);
int ans=1;
for(int i=1; i<=n; i++)
{
if(i>d+1)
{
update(1,1,ma,b[i-d-1],dp[i-d-1]);
}
dp[i]=query(1,1,ma,1,b[i]-1)+1;
ans=max(ans,dp[i]);
}
printf("%d\n",ans);
}
}