Codeforces Round #720 (Div. 2) D. Nastia Plays with a Tree

D. Nastia Plays with a Tree

题意:n个节点的树,用最少的操作次数使得每个节点的度数<=2保证最后也是一棵树。
操作

  1. 选择一条已存在的边删掉
  2. 在任意两个节点间添加一条边

输出:最小的操作次数以及每次的删除边的节点以及加边的节点

思路:看题解没写网络流解法,那我来写一下。

  • 首先看复杂度如果线性建边:O(n*sqrt(n))
  • 树是一个特殊的二分图,可以染色后保持原来的边不变且flow=1
  • S——左部点 flow=2. 右部点——>T flow=2.
  • 这样跑出最大流之后在残量网络上扫一遍,那些被删除的边就肯定是流量为0的边
  • 至于加边的过程:对于残量网络必定是个森林(以flow的视角来看)那么只需要在森林里面的叶子节点之间加边让森林之间联通就行

Code:

int T;
std::vector<int> G[N],B[N];
int u[N],v[N],col[N],fa[N],deg[N],a[N];
void dfs(int u,int fa,int c){
	col[u]=c;
	for(int v:G[u]){
		if(v==fa)continue;
		dfs(v,u,c^1);
	}
}
int Find(int x){
	return x==fa[x]?x:fa[x]=Find(fa[x]);
}
int join(int x,int y){
	x=Find(x),y=Find(y);
	fa[x]=y;
}

signed main() {
	scanf("%d",&T);
	while(T--){
		scanf("%d",&n);
		for(int i=1;i<=n;i++){
			G[i].clear();
			B[i].clear();
			fa[i]=i;
			col[i]=0;
			deg[i]=0;
		}
		for(int i=1;i<n;i++){
			scanf("%d%d",&u[i],&v[i]);
			G[u[i]].push_back(v[i]);
			G[v[i]].push_back(u[i]);
		}
		dfs(1,-1,0);
		s=n+1,t=n+2;
		ac.init(n);
		for(int i=1;i<=n;i++){
			if(col[i]==0)ac.addedge(s,i,2);
			else ac.addedge(i,t,2);
		}
		for(int i=1;i<n;i++){
			if(col[u[i]]==0){
				ac.addedge(u[i],v[i],1);
			}
			else{
				ac.addedge(v[i],u[i],1);
			}
		}
		ac.Dinic();
		map<pair<int,int>,int>mp;
		for(int u=1;u<=n;u++){
			for(int i=head[u]; i; i=edge[i].next) {
                int v=edge[i].to;
                if(v>n)continue;
                else if(edge[i].flow==1)mp[{v,u}]=1,mp[{u,v}]=1,join(u,v),deg[u]++,deg[v]++;
            }
		}
		std::vector<pair<int,int>>ans1,ans2;
		for(int i=1;i<n;i++){
			if(mp.count({u[i],v[i]}))continue;
			else ans1.push_back({u[i],v[i]});
		}
		cnt=0;
		for(int i=1;i<=n;i++){
			if(deg[i]==1){
				int x=Find(i);
				B[x].push_back(i);
				a[++cnt]=x;
			}
			else if(deg[i]==0){
				B[i].push_back(i),B[i].push_back(i);
				a[++cnt]=i;
			}
		}
		sort(a+1,a+cnt+1);
		cnt=unique(a+1,a+cnt+1)-a-1;

		for(int i=1;i<=ans1.size();i++)ans2.push_back({B[a[i]][0],B[a[i+1]][1]});


		printf("%d\n",ans1.size());
		for(int i=0;i<ans1.size();i++){
			printf("%d %d %d %d\n",ans1[i].first,ans1[i].second,ans2[i].first,ans2[i].second);
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值