题意:一个长度为 n 的字符串 s,其中仅包含 ‘Q’, ‘W’, ‘E’, ‘R’ 四种字符。
如果四种字符在字符串中出现次数均为 n/4,则其为一个平衡字符串。
现可以将 s 中连续的一段子串替换成相同长度的只包含那四个字符的任意字符串,使其变为一个平衡字符串,问替换子串的最小长度?
如果 s 已经平衡则输出0。
输入:
一行字符表示给定的字符串s
输出:
一个整数表示答案
这里不给样例了。
接替思路:一般极值问题都可以二分,但是这个题可以用尺取法,维护的是一个连续的区间,并且时间复杂度不高,是线性的。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int q,w,e,r,n;
int main()
{
string a;
q=w=e=r=0;
cin>>a;
n=a.size();
for(int i=0;i<a.size();i++)//初始化
{
if(a[i]=='Q')q++;
else if(a[i]=='W')w++;
else if(a[i]=='E')e++;
else r++;
}
if(q==n/4&&w==n/4&&e==n/4)cout<<0<<endl;//一开始就满足
else
{
int ll=0,rr=0,ans=n+1;//尺取
while(1)
{
int q1=0,w1=0,e1=0,r1=0;
int q2=q,w2=w,e2=e,r2=r;
for(int i=ll;i<=rr;i++)
{
if(a[i]=='Q')q1++;
else if(a[i]=='W')w1++;
else if(a[i]=='E')e1++;
else r1++;
}
q2-=q1,w2-=w1,e2-=e1,r2-=r1;
int h=max(max(q2,w2),max(e2,r2));
int total=rr-ll+1-(4*h-q2-w2-e2-r2);//减去达到平均的最低要求
if(total>=0&&total%4==0)//这里只要满足减去之后mod4=0即可
{
ans=min(ans,rr-ll+1);//满足左区间右移
ll++;
}else//不满足右区间右移
{
rr++;
}
if(ans==1||rr==n)
{
break;
}
}
cout<<ans<<endl;
}
return 0;
}