上升子序列
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
一个只包含非负整数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列{a1, a2, ...,aN},我们可以得到一些上升的子序列{ai1, ai2, ..., aiK},这里1 ≤ i1 < i2 <...< iK ≤ N。例如:对于序列{1, 7, 3, 5, 9, 4, 8},有它的一些上升子序列,如{1, 7}, {3, 4, 8}等等。这些子序列中序列和最大的是子序列{1, 3, 5, 9},它的所有元素的和为18。
对于给定的一个序列,求出它的最大的上升子序列的和。
注意:最长的上升子序列的和不一定是最大的哦。
Input
输入包含多组测试数据,对于每组测试数据:
输入数据的第一行为序列的长度 n(1 ≤ n ≤ 1000),
第二行为n个非负整数 b1,b2,...,bn(0 ≤ bi ≤ 1000)。
Output
对于每组测试数据,输出其最大上升子序列的和。
Sample Input
7 1 7 3 5 9 4 8
Sample Output
18
代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
int n;
int t;
int max;
int i,j;
int a[1500];
int dp[1500];
while(~scanf("%d",&n))
{
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
dp[0]=a[0];
for(i=0;i<n;i++)
{
t=dp[i]=a[i];
for(j=0;j<i;j++)
{
if(a[j]<a[i]&&dp[j]+t>dp[i])
{
dp[i]=dp[j]+t;
}
}
}
max=dp[0];
for(i=0;i<n;i++)
{
if(dp[i]>max)
{
max=dp[i];
}
}
printf("%d\n",max);
}
return 0;
}