上升子序列

上升子序列

Time Limit: 1000 ms Memory Limit: 65536 KiB

Submit Statistic

Problem Description

一个只包含非负整数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列{a1, a2, ...,aN},我们可以得到一些上升的子序列{ai1, ai2, ..., aiK},这里1 ≤ i1 < i2 <...< iK ≤ N。例如:对于序列{1, 7, 3, 5, 9, 4, 8},有它的一些上升子序列,如{1, 7}, {3, 4, 8}等等。这些子序列中序列和最大的是子序列{1, 3, 5, 9},它的所有元素的和为18。

对于给定的一个序列,求出它的最大的上升子序列的和。

注意:最长的上升子序列的和不一定是最大的哦。

Input

输入包含多组测试数据,对于每组测试数据:

输入数据的第一行为序列的长度 n(1 ≤ n ≤ 1000),

第二行为n个非负整数 b1,b2,...,bn(0 ≤ bi ≤ 1000)。

Output

对于每组测试数据,输出其最大上升子序列的和。

Sample Input

7
1 7 3 5 9 4 8

Sample Output

18

 

代码如下:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{

    int n;
    int t;
    int max;
    int i,j;
    int a[1500];
    int dp[1500];
    while(~scanf("%d",&n))
    {
        for(i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
        dp[0]=a[0];
        for(i=0;i<n;i++)
        {
            t=dp[i]=a[i];
            for(j=0;j<i;j++)
            {
                if(a[j]<a[i]&&dp[j]+t>dp[i])
                {
                    dp[i]=dp[j]+t;
                }
            }
        }
        max=dp[0];
        for(i=0;i<n;i++)
        {
            if(dp[i]>max)
            {
                max=dp[i];
            }
        }
        printf("%d\n",max);


    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值