Tensorflow之数据的加载

加载数据
tensorflow作为符号编程框架,需要先构建数据流图,再读取数据,随后在进行模型的训练,所以其官网给出了三种加载数据的方式

  • 预加载数据, 在tensorflow中,通过定义常量或者变脸来保存所有数据
  • 填充数据 , 产生数据,再把数据填充后端
  • 从文件中读取 从文件中直接读取,让队列管理器从文件中读取数据

(1)预加载数据

	x1=tf.constant([2,3,4])
    x2=tf.constant([4, 0, 1])
    y=tf.add(x1,x2)

这种方法的缺点在于,将数据直接嵌入在数据流图中,当训练数据比较大的时候,很消耗内存

(2)填充数据
使用sess.run()中的feed_dict参数,将python产生的数据填充给后端

x1=tf.constant([2,3,4])
    x2=tf.constant([4, 0, 1])
    y=tf.add(x1,x2)
    import tensorflow as tf
    a1=tf.placeholder(tf.int16)
    a2=tf.placeholder(tf.int16)
    b=tf.add(x1,x2)
    c1=[2,3,4]
    c2=[4,5,6]
    with tf.Session() as sess:
        print(sess.run(b,feed_dict={a1:c1,a2:c2}))

填充的方式也有数据量大,消耗内存等缺点,并且数据类型转换等中间环节增减了不少开销,所以最好是使用第三种方法

(3)从文件中读取数据
从文件中读取数据分为两个步骤

  • 把样本写入TFRecords二进制文件中
  • 再从队列中读取
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值