约瑟夫算法

本文介绍了约瑟夫环的经典算法问题,描述了问题背景和解决思路。通过枚举和集合操作,模拟报数过程,每次报到m的人出圈,直至所有人出圈。文章提到还有一种解法,即遍历集合时将到k的人设为0,但具体实现未给出。作者作为算法初学者,正在逐步理解这个问题。
摘要由CSDN通过智能技术生成

约瑟夫 经典算法
问题描述:N个人围成一圈,从第一个人开始报数,报到m的人出圈,剩下的人继续从1开始报数,报到m的人出圈;如此往复,直到所有人出圈。输出最后一个人的编号(模拟此过程,输出出圈的人的序号)
思路:
1.利用枚举和集合,(本来是想用C去写的,但是C的数组长度可变的功能,苏哦一选择了java的集合)
2.将所有人数存入到集合中,然后将这个集合进行遍历
3.寻找规律,找出到K时所与i应下标的位置,将其移除
在这里插入图片描述

代码如下所示:

public static void main(String[] args) {
   
	in
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值