平衡二叉搜索树(Balanced Binary Search Tree, 简称 BBST)是一种特殊的二叉搜索树(Binary Search Tree, 简称 BST),它通过在插入和删除节点时保持树的平衡,来确保树的高度较低,从而优化搜索、插入和删除操作的时间复杂度。
在普通的二叉搜索树中,如果数据插入的顺序是随机的,那么树的高度(最坏情况下)可能是 O ( n ) O(n) O(n),这将导致搜索、插入和删除操作的时间复杂度在最坏情况下达到 O ( n ) O(n) O(n)。然而,在平衡二叉搜索树中,通过一些特定的规则或算法,可以确保树的高度保持在 O ( log n ) O(\log n) O(logn),从而使这些操作的时间复杂度保持在 O ( log n ) O(\log n) O(logn)。
常见的平衡二叉搜索树有以下几种:
-
AVL树:
- AVL树是一种自平衡二叉搜索树,其中每个节点的左子树和右子树的高度差(平衡因子)最多为1。
- 在插入和删除节点时,AVL树通过旋转操作来维持平衡。
-
红黑树:
- 红黑树也是一种自平衡二叉搜索树,它通过颜色和一系列性质来保持平衡。
- 红黑树的每个节点都有一个颜色属性(红色或黑色),并且满足以下性质:
- 节点是红色或黑色。
- 根节点是黑色。
- 所有叶子节点(NIL节点,即空节点)都是黑色。
- 如果一个节点是红色的,则它的两个子节点都是黑色的(即不存在两个连续的红色节点)。
- 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
- 在插入和删除节点时,红黑树通过重新着色和旋转操作来维持这些性质。
-
伸展树(Splay Tree):
- 伸展树是一种自调整的二叉搜索树,它通过在每次访问节点时将该节点移动到根的位置来优化后续访问。
- 伸展树没有严格的高度平衡要求,但通过“伸展”操作(一系列旋转),可以动态地调整树的结构以优化查找路径。
-
树堆(Treap):
- 树堆结合了二叉搜索树和堆的性质,它给每个节点分配一个优先值(通常是随机数),并通过这些优先值来维护堆的性质。
- 在插入和删除节点时,树堆通过旋转操作来维持二叉搜索树和堆的性质。
这些平衡二叉搜索树在实际应用中非常有用,特别是在需要频繁进行插入、删除和查找操作的场景中。