- 数据集(dataset):指由多个数据样本所组成的数据集合。大模型需要使用数据集进行训练和测试。
- 特征(feature):指数据样本中的每一个属性或变量。在大模型中,特征是用来描述数据样本特点的重要信息。
- 类别(category):指将数据样本分为不同类别或标签。在大模型中,类别是我们需要预测的对象。
- 训练集(training set):指用来训练大模型的数据集。
- 测试集(test set):指用来测试大模型准确性的数据集。测试集通常与训练集不同。
- 监督学习(supervised learning):指使用有标签的数据集进行训练,从而训练出模型能够预测数据集中未标记数据的标签的机器学习方法。
- 非监督学习(unsupervised learning):指使用无标签的数据集进行训练,根据数据的结构和特征进行分析并挖掘潜在的有用信息的机器学习方法。
- 交叉验证(cross-validation):指将训练集划分成若干个子集,每次使用其中一个子集作为验证集,其余子集作为训练集进行模型训练和测试的方法。
- 过拟合(overfitting):指模型过于复杂,过度拟合了训练集,不能很好地泛化到新数据,导致测试集表现不佳。
- 欠拟合(underfitting):指模型过于简单,无法很好地适应训练集和测试集,导致预测准确性较低。
- 维度灾难(curse of dimensionality):指在高维空间中,数据样本稀疏,距离的概念变得不明确,以及模型维度大、计算复杂度高等问题。
- 随机森林(random forest):是一种常用的基于决策树的大模型,它通过构建多个决策树并集成它们的结果来提高模型的准确性
- 深度学习(deep learning):是一种基于人工神经网络的大模型,通过多层次的神经元和权重进行信息的处理和抽象,从而学习并提取出数据的高层次特征。
- 自然语言处理(Natural Language Processing,NLP):是计算机科学和人工智能领域的一个重要分支,用于让计算机理解和处理人类自然语言的能力。
- 语音识别(Speech Recognition):是将人类语言转换成文本或指令的技术,基于声学和语言学知识,并结合大量的语音数据进行模型训练。
- 语音合成(Speech Synthesis):是将计算机生成的文本转换成语音的技术,常见的方法包括联合规则、模型合成、单元选择、拼接等。
- 机器学习(Machine Learning,ML):是人工智能领域中的一种方法,通过模型训练和优化来使机器具有更高的智能水平。
- 深度学习(Deep Learning):是一种基于人工神经网络的机器学习方法,通过多层次神经网络对数据进行特征提取和学习,从而实现高效的语音识别和自然语言理解。
- 聊天机器人(Chatbot):是一种基于自然语言处理和机器学习技术的智能客服系统,能够理解和回答用户的自然语言提问。
- 语音助手(Voice Assistant):是一种基于语音识别和语音合成技术的软件,常见的语音助手包括Apple的Siri、亚马逊的Alexa和谷歌的Google Assistant。
- 语义理解(Semantic Understanding):是指让机器能够理解人类语言的真正含义和目的的能力,是实现智能客服系统的关键技术之一。
- 人机交互(Human-Computer Interaction,HCI):是一种让人类和计算机之间进行有效沟通和交互的技术,旨在提高计算机系统的易用性和用户满意度。
- 情感分析(Sentiment Analysis):是一种通过分析自然语言中的情感信息,并判断情感的正面、负面或中性,以了解人们对特定话题或产品的看法和情感。