数论

这篇博客介绍了数论的基础概念,包括大整数的质数估算、判断质数的算法如试除法和Miller-Rabin测试,以及质数筛法如Eratosthenes筛法和线性筛法。讨论了质因数分解、正约数的计算以及最大公约数的欧几里得算法。同时,文章涵盖了欧拉函数、同余理论,包括费马小定理、欧拉定理和扩展欧拉定理的应用。还提到了扩展欧几里得算法、乘法逆元和线性同余方程的解法。最后,预告了中国剩余定理和高次同余方程的探讨。
摘要由CSDN通过智能技术生成

一、对于大整数 N N N来说,不大于 N N N的质数大约有 N ln ⁡ N 个 \frac{N}{\ln N}个 lnNN
二、 判断质数的方法

  1. 试除法 复杂度 O ⁡ ( N ) \operatorname{O}(\sqrt N) O(N ) 绝对正确

  2. Miller Robbin 非常高效,但有将合数判为质数的可能
    通过费马小定理,猜想当满足 a m − 1 ≡ 1 ( m o d m ) a^{m-1}\equiv1\pmod m am11(modm) m m m是质数(虽然这样不对,网上能查到不少反例)
    再辅以二次探测定理:

    若 p 是 质 数 , x < p 且 x 2 ≡ 1 ( m o d p ) 则 x = 1 或 x = p − 1 若 p是质数,x<p且x^2\equiv 1\pmod p则x=1或x=p-1 px<px21(modp)x=1x=p1

    进行验证。
    具体:取几个质数作为 a a a,从 m − 1 m-1 m1中除出尽可能多的2()假设结果为 d d d,个数为 s s s算出 a d a^d ad次方进行 s s s平方,若某一刻模 p p p的余数为 1 1 1且平方前不为 1 1 1 m − 1 m-1 m1 m m m不是质数
    代码

    long long a[8]={
         2,3,5,7,11,13,17,61};
    long long mul(long long x,long long y,long long p)
    {
         
    	long long ret=0;
    	x%=p;
    	y%=p;
    	while(y)
    	{
         
    		if(y&1)(ret+=x)%=p;
    		y>>=1;
    		(x*=2)%=p;
    	}
    	return ret%p;
    }
    
    long long qpow(long long x,long long y,long long p)
    {
         
    	long long ret=1;
    	while(y)
    	{
         
    		if(y&1)ret=mul(ret,x,p);
    		y>>=1;
    		x=mul(x,x,p);
    	}
    	return ret%p;
    }
    bool isprime(long long x)//miller robbin
    {
         
    	if(x==2)return true;
    	if(!(x&1))return false;
    	if(x<=1)return false;
    	long long d=x-1;
    	long long s=0;
    	while(!(d&1))
    	{
         
    		++s;
    		d>>=1;
    	}
    
    	for(int i=0;i<8;++i)
    	{
         
    		long long k=qpow(a[i],d,x);
    		for(int j=1;j<=s;++j)
    		{
         
    			long long y=mul(k,k,x);
    			if(y==1&&k!=1&&k!=x-1)return false;
    			k=y;
    		}
    	}
    	return true;
    }
    

三.质数筛法

  1. Eratosthenes筛法 简单基础 复杂度大约 O ⁡ ( N log ⁡ 2 N ) \operatorname{O}(N\log ^2N) O(Nlog2N)
    bool vis[100005];
    void Eratosthenes(int n)
    {
         
    	for(int i=2;i<=n;++i)
    	{
         
    		if(vis[i])continue;
    		printf("%d\n",i)l
    		for(int j=i;j<=n/i;++j)vis[i*j]=true;
    	}
    }	 
    
  2. 线性筛法 复杂度 O ⁡ ( N ) \operatorname{O}(N) O(N)
    int vis[100005];//v[i]:the smallest prime factor of i
    int cnt,prim[10005];
    void primes(int n)
    {
         
    	cnt=0;//the total number of prime numbers 
    	for(int i=2;i<=n;++i)
    	{
         
    		if(vis[i]==0)vis[i]=i,prim[++cnt]=i;
    		for(int j=1;j<=cnt;++j)
    		{
         
    			if(prim[j]>vis[i]||prim[j]>n/i)break;
    			vis[i*prim[j]]=prim[j];
    		}
    	}
    	for(int i=1;i<=cnt;++i)printf("%d\n",prim[i]);
    } 
    
    因为每个数只会被它的最小质因子筛一次 故是线性的

四、质因数分解

  1. 试除法
  2. Pollard’s Rho
    (To be continued…)

五、约数

  1. 基本定理的推论

    若正整数N被唯一分解为 N = p 1 c 1 p 2 c 2 … p m c m N=p_1^{c_1}p_2^{c_2}\dots p_m^{c_m} N=p1c1p2c2pmcm,其中 c i c_i ci都是整数, p i p_i pi都是质数,且满足 p 1 < p 2 < ⋯ < p m p_1<p_2<\dots <p_m p1<p2<<pm 那么
    N N N的正约数集合可写作 { p 1 b 1 p 2 b 2 … p m b m , 0 ≤ b i ≤ c i } \{p_1^{b_1}p_2^{b_2}\dots p_m^{b_m},0\leq b_i\leq c_i\} { p1b1p2b

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值