Time Limit: 1000MS
Memory Limit: 10000KTotal
Submissions: 46054
Accepted: 15755Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。Input输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。Output输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
Sample Input
2 1
8 4
4 7
Sample Output0
1
0
题目分析:
关键是找出必输点之间的规律,起初是想用二维数组做的,一个必败点的右边和下边和右下方向都是必胜点,因为我们可以通过规则取石子使对手取得必败点上,但是始终写不出实现的代码。
通过查资料发现必败点(m(x),n(y))中,m(x)=|m(x)-n(y)|0.618n(y),0.618也就是“黄金分割”。
而0.618=sqrt(5.0)/2;
程序说明:
输入m(x),n(y),用if语句判断是不是必败点。
程序实现:
#include "pch.h"
#include <iostream>
#include<cmath>
using namespace std;
int main()
{
int a, b,c,s;
while (cin >> a >> b)
{
if (a > b)
{
c = a - b;
s =c * (1 + sqrt(5.0)) / 2;
if (b == s)
cout << "0" << endl;
else
cout << "1" << endl;
}
else
{
c = b - a;
s = c * (1 + sqrt(5.0)) / 2;
if (a == s)
cout << "0" << endl;
else
cout << "1" << endl;
}
}
}