Costas阵列的定义

Costas阵列是一种特殊的n阶置换矩阵,其特征在于非循环相关函数的最大值在除(0,0)外的点达到1。这种矩阵在信号处理和信息技术中有重要应用,因为它具有优良的散射特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Costas阵列

设有一个 n ∗ n n*n nn阶置换矩阵 A = { a i j } n × n A=\{{a_{ij}}\}_{n \times n} A={aij}n×n,所谓置换矩阵指的是矩阵中的元素 a i j = 0 a_{ij}=0 aij=0或者 1 1 1,且矩阵每行每列只有一个元素等于1,例如下图所示的矩阵即为置换矩阵
在这里插入图片描述
定义置换矩阵的非循环相关函数 c ( r , s ) c(r,s) c(r,s)
c ( r , s ) = ∑ i = 1 n ∑ j = 1 n a i j a ( i + r ) ( j + s ) ,其中 r 、 s 为任意整数 c(r,s)=\sum_{i=1}^{n}{\sum_{j=1}^{n}{a_{ij}a_{(i+r)(j+s)}}},其中r、s为任意整数 c(r,s)=i=1nj=1naija(i+r)(j+s),其中rs为任意整数
其中当 i + r i+r i+r j + s j+s j+s不在 ( 1 , n ) (1,n) (1,n)范围中时,定义 a ( i + r ) ( j + s ) = 0 a_{(i+r)(j+s)}=0 a(i+r)(j+s)=0。如果置换矩阵的非循环相关函数满足
max ⁡ [ c ( r , s ) ] ( r , s ) ≠ ( 0 , 0 ) = 1 \underset{(r,s)\neq(0,0)}{\max[c(r,s)]}=1 (r,s)=(0,0)max[c(r,s)]=1
则将置换矩阵称为 n n n阶Costas阵列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值