Costas阵列
设有一个
n
∗
n
n*n
n∗n阶置换矩阵
A
=
{
a
i
j
}
n
×
n
A=\{{a_{ij}}\}_{n \times n}
A={aij}n×n,所谓置换矩阵指的是矩阵中的元素
a
i
j
=
0
a_{ij}=0
aij=0或者
1
1
1,且矩阵每行每列只有一个元素等于1,例如下图所示的矩阵即为置换矩阵
定义置换矩阵的非循环相关函数
c
(
r
,
s
)
c(r,s)
c(r,s)为
c
(
r
,
s
)
=
∑
i
=
1
n
∑
j
=
1
n
a
i
j
a
(
i
+
r
)
(
j
+
s
)
,其中
r
、
s
为任意整数
c(r,s)=\sum_{i=1}^{n}{\sum_{j=1}^{n}{a_{ij}a_{(i+r)(j+s)}}},其中r、s为任意整数
c(r,s)=i=1∑nj=1∑naija(i+r)(j+s),其中r、s为任意整数
其中当
i
+
r
i+r
i+r和
j
+
s
j+s
j+s不在
(
1
,
n
)
(1,n)
(1,n)范围中时,定义
a
(
i
+
r
)
(
j
+
s
)
=
0
a_{(i+r)(j+s)}=0
a(i+r)(j+s)=0。如果置换矩阵的非循环相关函数满足
max
[
c
(
r
,
s
)
]
(
r
,
s
)
≠
(
0
,
0
)
=
1
\underset{(r,s)\neq(0,0)}{\max[c(r,s)]}=1
(r,s)=(0,0)max[c(r,s)]=1
则将置换矩阵称为
n
n
n阶Costas阵列。