【目标检测】YOLOv5算法实现(六):评价指标及实现

  本系列文章记录本人硕士阶段YOLO系列目标检测算法自学及其代码实现的过程。其中算法具体实现借鉴于ultralytics YOLO源码Github,删减了源码中部分内容,满足个人科研需求。
  本系列文章主要以YOLOv5为例完成算法的实现,后续修改、增加相关模块即可实现其他版本的YOLO算法。

文章地址:
YOLOv5算法实现(一):算法框架概述
YOLOv5算法实现(二):模型搭建
YOLOv5算法实现(三):数据集加载
YOLOv5算法实现(四):正样本匹配与损失计算
YOLOv5算法实现(五):预测结果后处理
YOLOv5算法实现(六):评价指标及实现
YOLOv5算法实现(七):模型训练
YOLOv5算法实现(八):模型验证
YOLOv5算法实现(九):模型预测

0 引言

  本篇文章实现目标检测评价指标的实现,主要包含以下几个指标:
   空间复杂度:参数量( Parameters )
   时间复杂度:浮点运算数( FLOPs )
   精度:精确率( P )、召回率( R )、混淆矩阵; 均值平均精度( mAP )
在这里插入图片描述

图1 模型验证流程
  模型精度的评价指标计算方法如下:

P = T P T P + F P P = { {TP} \over {TP + FP}} P=TP+FPTP
R = T P T P + F N R = { {TP} \over {TP + FN}} R=TP+FNTP
m A P = ∑ A P N {\rm{m}}AP = { {\sum {AP} } \over N} mAP=NAP
T P TP TP表示预测为正样本且实际为正样本数量, F P FP FP表示预测为正样本但实际为负样本数量。在目标检测中,根据IoU阈值类别对预测结果进行和实际标签的匹配,若匹配成功则该检测结果视为 T P TP TP,反之则视为 F P FP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

初初初夏_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值