线段树 (区间更新+区间查询)

题目链接:https://www.luogu.com.cn/problem/P3372

题意:

题解:如果采用单点更新的思路对区间进行更新的话时间复杂度会比较高,因此用了一个lazy数组(俗称懒人标记),它为什么叫懒人标记呢,比如更新的区间为[l,r]+z,而l到r覆盖了线段树某一个节点的区间,那么可以将该节点对应的lazy数组的值加上z,同时更新该节点的值,这样就可以避免更新它子孙节点的值了,当要查询或者修改的时候要将lazy标记往下传一层,这样就能保证当在更新或查询的时候子孙节点的值是正确的。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e5+10;
ll a[maxn],tree[maxn],lazy[maxn];
int n,m;
void build(int node,int start,int end){	//建树 
	if(start==end){
		tree[node]=a[start];return;
	}
	int mid=(start+end)/2;
	build(node*2,start,mid);
	build(node*2+1,mid+1,end);
	tree[node]=tree[node*2]+tree[node*2+1];
}
void pushdown(int node,int tot){  //将lazy标记向下传递 
	lazy[node*2]+=lazy[node];
	lazy[node*2+1]+=lazy[node];
	tree[node*2]+=lazy[node]*(tot-tot/2);
	tree[node*2+1]+=lazy[node]*(tot/2);
	lazy[node]=0;
}
void update(int node,int start,int end,int x,int y,ll z){ //更新 
	if(start>=x&&end<=y){
		lazy[node]+=z;
		tree[node]+=z*(end-start+1);
		return;
	}
	pushdown(node,end-start+1);
	int mid=(start+end)/2;
	if(x<=mid) update(node*2,start,mid,x,y,z);
	if(y>mid) update(node*2+1,mid+1,end,x,y,z);
	tree[node]=tree[node*2]+tree[node*2+1];
}
ll query(int node,int start,int end,int l,int r){  //查询 
	if(l>end||r<start) return 0;
	if(start>=l&&end<=r) return tree[node];
	pushdown(node,end-start+1);
	int mid=(start+end)/2;
	return query(node*2,start,mid,l,r)+query(node*2+1,mid+1,end,l,r);
}

int main()
{
	int op,x,y;ll k;
	cin>>n>>m;
	for(int i=1;i<=n;i++) cin>>a[i];
	build(1,1,n);
	while(m--){
		cin>>op;
		if(op==1){
			cin>>x>>y>>k;
			update(1,1,n,x,y,k);
		}
		else{
			cin>>x>>y;
			cout<<query(1,1,n,x,y)<<endl;
		}
	}
	return 0;	
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值