铺路问题:
1、1*n长度的路的铺砖问题
2、2*n长度的路的铺砖问题
3、3*n长度的路的铺砖问题
一、1*n的铺砖问题
题目如下所示:某人要铺1*n长度的路,有三种砖可以使用:1*1的方砖,两个直角边分别为1,1的直角三角砖(方砖从对角线切开得到两块这样的砖,下称小三角)以及斜边是2的等边直角三角砖(下称大三角)。提问:
(1)铺1*n长度的路一共有多少方案数;
(2)铺1*n长度的路一共可能出现的方砖总数;
(3)铺1*n长度的路可能出现的连续两块方砖的总次数。
对付这种题目的实际策略并不像它表面那样难以捉摸,我们只要立好一个标准的拆分方式,就可以得到很好的递推关系。我将1*n的路分为两个部分,如图所示:
第一个部分是从路的末端算起直到找到第一个可以有垂直缝隙的位置,长度为x(表示为灰色),余下的为第二部分。
l 第一问:
当x=1时,灰色部分公有三种方案:一块方砖,2块小三角(摆成两种方向),如图所示:
根据最后一部分的竖线位置在哪,确定递推关系式。
那么,如果前长度为n-1的路方案数是an-1,此时总的方案数是3an-1。
1、1*n长度的路的铺砖问题
2、2*n长度的路的铺砖问题
3、3*n长度的路的铺砖问题
一、1*n的铺砖问题
题目如下所示:某人要铺1*n长度的路,有三种砖可以使用:1*1的方砖,两个直角边分别为1,1的直角三角砖(方砖从对角线切开得到两块这样的砖,下称小三角)以及斜边是2的等边直角三角砖(下称大三角)。提问:
(1)铺1*n长度的路一共有多少方案数;
(2)铺1*n长度的路一共可能出现的方砖总数;
(3)铺1*n长度的路可能出现的连续两块方砖的总次数。
对付这种题目的实际策略并不像它表面那样难以捉摸,我们只要立好一个标准的拆分方式,就可以得到很好的递推关系。我将1*n的路分为两个部分,如图所示:
第一个部分是从路的末端算起直到找到第一个可以有垂直缝隙的位置,长度为x(表示为灰色),余下的为第二部分。
l 第一问:
当x=1时,灰色部分公有三种方案:一块方砖,2块小三角(摆成两种方向),如图所示:
根据最后一部分的竖线位置在哪,确定递推关系式。
那么,如果前长度为n-1的路方案数是an-1,此时总的方案数是3an-1。