▶ Eigen
文章平均质量分 93
Eigen 矩阵处理库的读书笔记
太阳风暴
技术圈里摸爬滚打的编程小白,记录学习过程中的分享、研究和总结,钟爱C、C++、C#后端语言,钟爱微信小程序快速开发,常乐村男子职业技术老油条,本科修行已完成(√),修炼进阶研究生中(......)愿望:全栈大佬 ( 全栈进度 68%)
GIT地址:https://gitee.com/sunstom、
https://github.com/add-uos、
https://github.com/SunStorm2018
展开
-
Eigen-约简,访问和广播
如果要将矩阵mat的第0列与v(0)相乘,第1列与v(1)相乘,以此类推,则使用mat = mat * v. asdiagonal()。(m.colwise() - v).colwise(). squarednorm()是一个部分约简,按列计算平方范数。最简单的例子是 maxCoeff(&x,&y) 和 minCoeff(&x,&y),它们可用于查找矩阵或数组中最大或最小系数的位置。由函数 trace() 返回的矩阵的轨迹是对角线系数的和,可以等效地计算为 a.diagonal().sum()。原创 2024-03-04 09:45:08 · 841 阅读 · 0 评论 -
Eigen-高级矩阵初始化
下面的示例说明了 LinSpaced() 方法,它打印一个表,其中包含以度为单位的角度、以弧度为单位的对应角度以及它们的正弦和余弦。Eigen定义了像 setZero(), MatrixBase::setIdentity() 和DenseBase::setLinSpaced() 这样的实用函数来方便地做到这一点。因此,第二个变体需要一个参数,可用于一维动态大小的对象,而第三个变体需要两个参数,可用于二维对象。的三种方法:使用静态方法和赋值,使用静态方法和逗号初始化器,或使用 setXxx() 方法。原创 2024-03-01 10:03:27 · 1445 阅读 · 0 评论 -
Eigen-矩阵切片和索引
本页介绍了操作符 () 为索引子集行和列提供的多种可能性。这个API已经在特性3.4中引入。它支持块API提出的所有特性,以及更多。特别是,它支持切片,包括在矩阵中均匀间隔的一组行、列或元素,或者从索引数组中索引。上述所有操作都通过通用的下面的API方法处理。索引单行或列的整数,包括符号索引。符号Eigen::all表示按递增顺序排列的全部行或列。一个由Eigen::seq、Eigen::seqN或Eigen::placeholders::lastN函数构造的算术序列。任何一维矢量/整数数组。原创 2024-02-29 22:13:33 · 1574 阅读 · 0 评论 -
Eigen-Block块操作
块是矩阵或数组的矩形部分。块表达式既可以用作右值,也可以用作左值。与通常的Eigen表达式一样,只要让编译器进行优化,这种抽象的运行时成本为零。优化都是自动的无需我们考虑太多。原创 2024-02-29 21:59:52 · 1695 阅读 · 0 评论 -
Eigen-Array数组类和系数式运算
Array类提供了通用数组,而Matrix类则用于线性代数。此外,Array类提供了一种简单的方法来执行系数操作,这种操作可能没有线性代数意义,比如向数组中的每个系数添加一个常数,或者对两个数组进行系数乘。原创 2024-02-28 20:59:38 · 490 阅读 · 0 评论 -
Eigen-矩阵和向量运算
Eigen 通过重载常见的c++算术运算符(如+,-,*)或通过特殊方法(如 dot(), cross() 等)提供 矩阵/向量 算术运算。对于Matrix类(矩阵和向量),操作符只被重载以支持线性代数操作。例如,matrix1 * matrix2表示矩阵-矩阵乘积,而向量+标量就是不允许的。这里讨论的全是线性代数的操作,如果是需要对各种数组操作,而不是线性代数,请参阅专栏后一节。原创 2024-02-28 17:34:32 · 1946 阅读 · 0 评论 -
Eigen-Matrix矩阵
在Eigen中,所有矩阵和向量都是矩阵模板类的对象。向量只是矩阵的一种特殊情况,要么有一行,要么有一列。矩阵就是一个二维数表,可以有多行多列。Eigen定义了以下矩阵类型:都是用的 Matrix 不同模板参数,预定义为不同类型。例如,MatrixXi实际上是 :Matrix.例如,MatrixX3i实际上是 :Matrix.例如,Matrix4Xd实际上是 :Matrix.原创 2024-02-28 17:00:39 · 1418 阅读 · 0 评论