一、论文信息
论文名称:Dynamic Filter Networks
作者团队:NIPS2016
二、动机与创新
-
卷积层是通过将上一层的特征映射与一组过滤器进行卷积计算输出特征映射,滤波器是卷积层的唯一参数,通常用反向传播算法在训练中学习,学习到的滤波器经训练后固定,在测试中不变。
-
因此作者,提出一个 Dynamic Filter Networks,这个模型中的卷积核是可学习的,通过学习将输入映射到过滤器的函数,实现随输入的不同而变化。
三、模型结构
1. Dynamic Filter Networks包含两部分:Filter-generating network和Dynamic filtering layer。第一部分的作用是,产生卷积核,第二部分是实现卷积核的乘法操作。