论文阅读-DFN: Dynamic Filter Networks-动态卷积网络

本文介绍了Dynamic Filter Networks的论文,该模型提出卷积核可学习并随输入变化,由Filter-generating network和Dynamic filtering layer两部分构成。动态卷积层接受两个输入,产生样本特异性的卷积效果,分为Sample-specific和Sample specific & Position specific两种形式,为深度学习的卷积操作提供了新的思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、论文信息

论文名称:Dynamic Filter Networks

作者团队:NIPS2016

 二、动机与创新

  1. 卷积层是通过将上一层的特征映射与一组过滤器进行卷积计算输出特征映射,滤波器是卷积层的唯一参数,通常用反向传播算法在训练中学习,学习到的滤波器经训练后固定,在测试中不变。

  2. 因此作者,提出一个 Dynamic Filter Networks,这个模型中的卷积核是可学习的,通过学习将输入映射到过滤器的函数,实现随输入的不同而变化

三、模型结构

1. Dynamic Filter Networks包含两部分:Filter-generating networkDynamic filtering layer。第一部分的作用是,产生卷积核,第二部分是实现卷积核的乘法操作。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值