论文阅读-DF-Platter: Multi-Face Heterogeneous Deepfake Dataset(多人脸异构深度伪造数据集)

本文介绍了DF-Platter数据集,一个多人脸异构的深度伪造视频集合,旨在应对低分辨率、遮挡和多面部伪造的检测挑战。数据集涵盖多种生成技术、肤色、遮挡情况和性别平衡,提供了丰富的注释信息,用于训练和测试深度伪造检测算法。通过对遮挡、多面部和低分辨率视频的实验,评估了模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、论文信息

文章名称:DF-Platter: Multi-Face Heterogeneous Deepfake Dataset

作者团队:

 会议:cvpr2023

数据集地址:http://iab-rubric.org/df-platter-database

二、动机与创新

动机

目前大多数研究工作都集中在个人外表受控的高质量图像和视频上。 但是,deepfake 生成算法现在能够创建具有低分辨率、遮挡和操纵多个拍摄对象的 deepfake,这给检测带来了新的挑战。

 创新

作者提出了DF-Platter数据集,该数据集模拟了deepfake生成的真实场景。

  • 使用多种技术生成的低分辨率和高分辨

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值