rdd的mapPartitions是map的一个变种,它们都可进行分区的并行处理。
两者的主要区别是调用的粒度不一样:map的输入变换函数是应用于RDD中每个元素,而mapPartitions的输入函数是应用于每个分区。
假设一个rdd有10个元素,分成3个分区。如果使用map方法,map中的输入函数会被调用10次;而使用mapPartitions方法的话,其输入函数会只会被调用3次,每个分区调用1次。
//生成10个元素3个分区的rdd a,元素值为1~10的整数(1 2 3 4 5 6 7 8 9 10),sc为SparkContext对象
val a = sc.parallelize(1 to 10, 3)
//定义两个输入变换函数,它们的作用均是将rdd a中的元素值翻倍
//map的输入函数,其参数e为rdd元素值
def myfuncPerElement(e:Int):Int = {
println("e="+e)
e*2
}
//mapPartitions的输入函数。iter是分区中元素的迭代子,返回类型也要是迭代子
def myfuncPerPartition ( iter : Iterator [Int] ) : Iterator [Int] = {
println("run in partition")
var res = for (e <- iter ) yield e*2
res
}
val b = a.map(myfuncPerElement).collect
val c = a.mapPartitions(myfuncPerPartition).collect
在Spark shell中运行上述代码,可看到打印了3次run in partition,打印了10次e=。
从输入函数(myfuncPerElement、myfuncPerPartition)层面来看
,map是推模式,数据被推到myfuncPerElement中;**mapPartitons是拉模式,**myfuncPerPartition通过迭代子从分区中拉数据。
这两个方法的另一个区别
是在大数据集情况下的资源初始化开销和批处理处理,如果在myfuncPerPartition和myfuncPerElement中都要初始化一个耗时的资源,然后使用,比如数据库连接。在上面的例子中,myfuncPerPartition只需初始化3个资源(3个分区每个1次),而myfuncPerElement要初始化10次(10个元素每个1次),显然在大数据集情况下(数据集中元素个数远大于分区数),mapPartitons的开销要小很多,也便于进行批处理操作。
mapPartitionsWithIndex和mapPartitons类似,只是其参数多了个分区索引号。