从零到精通:2025年最全大模型学习资源

从零到精通:2025年最全大模型学习资源

⬇️资源覆盖从入门到进阶的LLM学习需求,适合学生、开发者及研究者。入门推荐Karpathy和吴恩达的课程,易懂且系统;复习推荐Hinton、Kiela及清华大学课程,深入且具启发性。通过理论学习与实践结合,可全面掌握大模型的核心知识与应用技能。

1. 大学课程

斯坦福大学
  • CS25: Transformers United V5 (2025)

image

  • 内容:探讨Transformer最新突破,邀请Google DeepMind的Denny Zhou、OpenAI的Karina Nguyen、Hongyu Ren及Meta的Andrew Brown等讲者。
  • 形式:免费开放,现场旁听或Zoom直播(每周二太平洋夏令时间15:00-16:20,北京时间周三06:00-07:20),视频上传至YouTube。
  • 资源:https://web.stanford.edu/class/cs25/, 第一期视频:https://www.youtube.com/watch?v=JKbtWimlzAE
  • 评价:前沿性强,适合跟踪最新研究动态,适合中高级学习者。
  • CS25: Transformers United (往期)
    • V2 - Geoffrey Hinton: Representing Part-Whole Hierarchies:提出GLOM模型,增强Transformer视觉任务表现,探讨自注意力机制瓶颈。
      • 链接:https://www.youtube.com/watch?v=CYaju6aCMoQ
      • 评价:★★★★☆,适合复习Transformer理论局限及视觉领域扩展。
    • V2 - Andrej Karpathy: Introduction to Transformers:系统讲解自注意力、多头注意力及Vision Transformer。
      • 链接:https://www.youtube.com/watch?v=XfpMkf4rD6E
      • 评价:★★★★★,入门必看,简洁清晰,适合初学者快速掌握Transformer核心。
    • V3 - Douwe Kiela: Retrieval Augmented Language Models:深入RAG技术,分析其解决幻觉和时效性问题的潜力。
      • 链接:https://www.youtube.com/watch?v=mE7IDf2SmJg
      • 评价:★★★★☆,复习RAG的绝佳资源,适合有基础的学习者。
    • V4 - Jason Wei & Hyung Won Chung:探讨LLM直观理解、扩展律及Transformer多模态潜力。
      • 评价:内容深入,适合中高级学习者复习LLM理论。
  • CS224N: Natural Language Processing with Deep Learning
    • 内容:全面NLP课程,覆盖深度学习技术及LLM。
    • 链接:https://web.stanford.edu/class/cs224n/
    • 评价:系统性强,适合中高级学习者深入学习NLP。
  • CS324: Large Language Models
    • 内容:LLM进阶研究。
    • 链接:https://stanford-cs324.github.io/winter2022/
    • 评价:适合研究导向的学习者,内容偏学术。
卡内基梅隆大学
  • 11-711 ANLP: Advanced Natural Language Processing

image

  • 内容:涵盖语言模型、序列建模、Transformer、提示与微调,提供课件下载。
  • 链接:https://phontron.com/class/anlp2024/lectures/
  • 评价:内容全面,适合中高级学习者复习NLP核心技术。
其他大学
  • 普林斯顿 COS 597G (2022): Understanding Large Language Models
    • 链接:https://www.cs.princeton.edu/courses/archive/fall22/cos597G/
    • 评价:理论性强,适合学术研究者。
  • 约翰霍普金斯 CS 601.471/671: NLP: Self-supervised Models
    • 链接:https://self-supervised.cs.jhu.edu/sp2023/index.html
    • 评价:专注自监督学习,适合中高级学习者。
  • 滑铁卢大学 CS 886: Recent Advances on Foundation Models
    • 链接:https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/
    • 评价:聚焦前沿基础模型,适合研究者。
  • 台湾大学 Introduction to Generative AI (2024)
    • 讲者:李宏毅
    • 链接:https://speech.ee.ntu.edu.tw/~hylee/genai/2024 spring.php
    • 评价:内容生动,适合中级学习者了解生成式AI。
  • 密歇根大学 LLMs and Transformers (2024)
    • 链接:https://www.ambujtewari.com/LLM-fall2024/
    • 评价:学术与实践结合,适合中高级学习者。

2. 在线课程与教程

DeepLearning.AI
  • Generative AI for Everyone (吴恩达)
    • 内容:生成式AI入门,介绍大模型概念与应用。
    • 链接:https://www.deeplearning.ai/courses/generative-ai-for-everyone/
    • 评价:★★★★☆,入门必看,通俗易懂,适合零基础学习者。
  • LLM Series (吴恩达)
    • 内容:全面LLM培训。
    • 链接:https://learn.deeplearning.ai/
    • 评价:内容丰富,适合中级学习者。
  • Getting Started with Mistral
    • 链接:https://www.deeplearning.ai/short-courses/getting-started-with-mistral/
    • 评价:实践性强,适合Mistral模型开发者。
  • Knowledge Graphs for RAG
    • 链接:https://www.deeplearning.ai/short-courses/knowledge-graphs-rag/
    • 评价:★★★★☆,复习RAG进阶应用的优质资源。
  • Multimodal RAG: Chat with Videos

image

  • 链接:https://www.deeplearning.ai/short-courses/multimodal-rag-chat-with-videos/
  • 评价:聚焦多模态RAG,适合中高级开发者。
OpenAI
  • OpenAI Academy

image

  • 内容:免费AI课程与社区,提供《提示词大师课》等,包含实时互动活动(仅英文)。
  • 链接:https://academy.openai.com/public/events
  • 评价:社区驱动,适合实践者与同行交流。
  • OpenAI Cookbook
    • 内容:OpenAI API使用示例。
    • 链接:https://github.com/openai/openai-cookbook
    • 评价:实用性强,适合API开发者。
Hugging Face
  • NLP Course
    • 内容:Transformer在NLP中的应用,包含代码示例。
    • 链接:https://huggingface.co/learn/nlp-course/chapter1/1
    • 评价:★★★★☆,入门必看,实践性强,适合有编程基础的初学者。
  • AI Agents Course
    • 链接:https://github.com/huggingface/agents-course
    • 评价:适合开发AI代理的实践者。
  • Hugging Face Learn
    • 链接:https://huggingface.co/learn
    • 评价:资源丰富,适合各阶段学习者。
微软
  • Generative AI for Beginners
    • 链接:https://github.com/microsoft/generative-ai-for-beginners
    • 评价:适合初学者,内容简洁。
  • State of GPT
    • 链接:https://www.youtube.com/watch?v=bZQun8Y4L2A
    • 评价:GPT技术概览,适合快速了解。
其他
  • Coursera: Prompt Engineering for ChatGPT
    • 链接:https://www.coursera.org/learn/prompt-engineering
    • 评价:提示工程入门,适合实践者。
  • Cohere LLM University
    • 链接:https://cohere.com/llmu
    • 评价:聚焦嵌入技术,适合开发者。
  • Weights & Biases AI Academy
    • 链接:https://www.wandb.courses/pages/w-b-courses
    • 评价:涵盖微调与LLMOps,适合中高级开发者。
  • Comet: LLM Evaluation
    • 链接:https://www.comet.com/site/llm-course/
    • 评价:LLM评估的系统课程,适合研究者。
  • Anthropic: Prompt Engineering Interactive Tutorial
    • 链接:https://github.com/anthropics/courses
    • 评价:交互式学习,适合提示工程实践。
  • Google: Generative AI for Developers
    • 链接:https://www.cloudskillsboost.google/paths/183
    • 评价:进阶开发者课程,内容深入。

3. 开源资源与教程

  • Andrej Karpathy
    • Neural Networks: Zero to Hero:神经网络与LLM系列。
      • 链接:https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
      • 评价:★★★★★,入门与复习必看,理论实践兼备。
    • Build nanoGPT:从头构建GPT模型。
      • 链接:https://github.com/karpathy/build-nanogpt
      • 评价:实践性强,适合动手学习。
    • LLM101n: Let’s Build a Storyteller:LLM开发实践。
      • 链接:https://github.com/karpathy/LLM101n
      • 评价:适合中级开发者。
    • Deep Dive into LLMs like ChatGPT:LLM深入讲解。
      • 链接:https://www.youtube.com/watch?v=7xTGNNLPyMI
      • 评价:内容全面,适合复习。
  • Mistral AI Cookbook:Mistral模型使用指南。
    • 链接:https://github.com/mistralai/cookbook
    • 评价:适合Mistral开发者。
  • LangGPT:提示工程学习。
    • 链接:https://github.com/langgptai/LangGPT
    • 评价:提示工程实践资源。
  • LLMs From Scratch (Datawhale):从零构建LLM。
    • 链接:https://github.com/datawhalechina/llms-from-scratch-cn
    • 评价:适合中文学习者实践。
  • Hands-on LLMs:金融顾问LLM开发。
    • 链接:https://github.com/iusztinpaul/hands-on-llms
    • 评价:应用驱动,适合开发者。
  • LLM Interview Notes:LLM面试技术准备。
    • 链接:https://github.com/wdndev/llm_interview_note
    • 评价:适合求职者。
  • LLM Technical Primer:LLM概念科普。
    • 链接:https://github.com/karminski/one-small-step
    • 评价:适合初学者快速了解。
  • LLMsBook:LLM资源集合。
    • 链接:https://github.com/liucongg/LLMsBook
    • 评价:资源全面,适合查阅。

4. 专题资源

  • RAG(检索增强生成)
    • ACL 2023 Tutorial:https://acl2023-retrieval-lm.github.io/
    • Learn RAG From Scratch:https://www.youtube.com/watch?v=sVcwVQRHIc8
    • RAG++: From POC to Production:https://www.wandb.courses/courses/rag-in-production
    • OpenRAG:https://openrag.notion.site/Open-RAG-c41b2a4dcdea4527a7c1cd998e763595
    • 评价:RAG是LLM应用热点,适合中高级学习者深入学习。
  • 扩散模型
    • 讲义:https://www.dropbox.com/scl/fi/gmwhx7jfi2nvm8pudn5it/lecture_diffusion_models.pdf
    • 评价:适合生成模型研究者。
  • 视觉Transformer
    • Smol Vision:https://github.com/merveenoyan/smol-vision
    • 评价:适合视觉模型开发者。
  • 交互式可视化
    • Transformer Explainer:https://poloclub.github.io/transformer-explainer/
    • 评价:直观理解Transformer,适合初学者。

5. 社区与中文资源

  • 清华大学NLP公开课(刘知远团队)
    • 内容:大模型原理、微调及中文NLP应用。
    • 链接:https://www.bilibili.com/video/BV1UG411p7zv/
    • 评价:★★★★☆,中文学习者复习必看,内容本地化。
  • PromptEngineering.org:提示工程资源。
    • 链接:https://promptengineering.org/
    • 评价:适合实践者。
  • LLM Agents Course:LLM代理开发。
    • 链接:https://llmagents-learning.org/f24
    • 评价:适合前沿应用开发者。

入门与复习必看课程

入门必看

  1. Andrej Karpathy - Neural Networks: Zero to Hero
    • 理由:从零讲解神经网络到LLM,理论与代码结合,教学生动。
    • 适合:零基础或有编程背景的初学者。
    • 链接:https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
  2. DeepLearning.AI - Generative AI for Everyone
    • 理由:吴恩达主讲,通俗易懂,适合非技术背景者快速了解AI。
    • 适合:完全零基础学习者。
    • 链接:https://www.deeplearning.ai/courses/generative-ai-for-everyone/
  3. Hugging Face - NLP Course
    • 理由:实践导向,结合Hugging Face工具,快速上手NLP任务。
    • 适合:有Python基础的初学者。
    • 链接:https://huggingface.co/learn/nlp-course/chapter1/1
  4. 斯坦福 CS25 V2 - Andrej Karpathy: Introduction to Transformers
    • 理由:40分钟精炼讲解Transformer核心,权威且清晰。
    • 适合:初学者快速掌握注意力机制。
    • 链接:https://www.youtube.com/watch?v=XfpMkf4rD6E

复习必看

  1. 斯坦福 CS25 V2 - Geoffrey Hinton: Representing Part-Whole Hierarchies
    • 理由:Hinton的GLOM模型提供Transformer局限性与未来方向的洞见。
    • 适合:有基础的学习者梳理理论。
    • 链接:https://www.youtube.com/watch?v=CYaju6aCMoQ
  2. 斯坦福 CS25 V3 - Douwe Kiela: Retrieval Augmented Language Models
    • 理由:系统讲解RAG,涵盖理论与最新架构,巩固应用知识。
    • 适合:熟悉Transformer的学习者。
    • 链接:https://www.youtube.com/watch?v=mE7IDf2SmJg
  3. 清华大学NLP公开课(刘知远团队)
    • 理由:中文讲解,覆盖大模型全貌及中文应用,适合本地化复习。
    • 适合:中文背景 Andrej Karpathy - Neural Networks: Zero to Hero
    • 理由:从零讲解神经网络到LLM,理论与代码结合,教学生动。
    • 适合:零基础或有编程背景的初学者。
    • 链接:https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
  4. DeepLearning.AI - Generative AI for Everyone
    • 理由:吴恩达主讲,通俗易懂,适合非技术背景者快速了解AI。
    • 适合:完全零基础学习者。
    • 链接:https://www.deeplearning.ai/courses/generative-ai-for-everyone/
  5. Hugging Face - NLP Course
    • 理由:实践导向,结合Hugging Face工具,快速上手NLP任务。
    • 适合:有Python基础的初学者。
    • 链接:https://huggingface.co/learn/nlp-course/chapter1/1
  6. 斯坦福 CS25 V2 - Andrej Karpathy: Introduction to Transformers
    • 理由:40分钟精炼讲解Transformer核心,权威且清晰。
    • 适合:初学者快速掌握注意力机制。
    • 链接:https://www.youtube.com/watch?v=XfpMkf4rD6E

复习必看

  1. 斯坦福 CS25 V2 - Geoffrey Hinton: Representing Part-Whole Hierarchies
    • 理由:Hinton的GLOM模型提供Transformer局限性与未来方向的洞见。
    • 适合:有基础的学习者梳理理论。
    • 链接:https://www.youtube.com/watch?v=CYaju6aCMoQ
  2. 斯坦福 CS25 V3 - Douwe Kiela: Retrieval Augmented Language Models
    • 理由:系统讲解RAG,涵盖理论与最新架构,巩固应用知识。
    • 适合:熟悉Transformer的学习者。
    • 链接:https://www.youtube.com/watch?v=mE7IDf2SmJg
  3. 清华大学NLP公开课(刘知远团队)
    • 理由:中文讲解,覆盖大模型全貌及中文应用,适合本地化复习。
    • 适合:中文背景的学习者。
    • 链接:https://www.bilibili.com/video/BV1UG411p7zv/
  4. DeepLearning.AI - Knowledge Graphs for RAG
    • 理由:聚焦RAG进阶应用,理论与实践结合。
    • 适合:熟悉RAG的学习者。
    • 链接:https://www.deeplearning.ai/short-courses/knowledge-graphs-rag/

学习路径建议

入门路径(1-2个月)

  1. 概念入门:学习《Generative AI for Everyone》(1周),快速了解大模型全貌。
  2. Transformer基础:观看《Andrej Karpathy - Introduction to Transformers》(1天),掌握自注意力机制。
  3. 实践上手:通过《Hugging Face - NLP Course》训练简单模型(2-3周)。
  4. 深入代码:完成《Andrej Karpathy - Build nanoGPT》,从头实现GPT(2-3周)。

复习路径(1个月)

  1. 理论梳理:重温《Geoffrey Hinton - Representing Part-Whole Hierarchies》(1天),理解Transformer局限性。
  2. RAG巩固:学习《Douwe Kiela - Retrieval Augmented Language Models》和《Knowledge Graphs for RAG》(1-2周)。
  3. 中文视角:复习《清华大学NLP公开课》,梳理本地化应用(1周)。
  4. 前沿跟踪:关注CS25 V5最新讲座(https://web.stanford.edu/class/cs25/),了解2025年进展。

其他建议

  • 实践驱动:利用nanoGPT、LLMs From Scratch等项目进行开发实践。
  • 社区参与:加入OpenAI Academy或Hugging Face社区,与专家交流。
  • 持续学习:定期关注DeepLearning.AI、斯坦福CS25等平台更新。

{
   "target":"简单认识我",
   "selfInfo":{
        "genInfo":"大厂面试官,中科院自动化所硕士(人工智能),从事数据闭环业务、RAG、Agent等,承担技术+平台的偏综合性角色。善于调研、总结和规划,善于统筹和协同,喜欢技术,喜欢阅读新技术和产品的文章与论文",
        "contactInfo":"abc061200x, v-adding disabled",
        "slogan":"简单、高效、做正确的事",
         "extInfo":"喜欢看电影、喜欢旅游、户外徒步、阅读和学习,不抽烟、不喝酒,无不良嗜好"
   } 
}

从零到精通:2025年最全大模型学习资源

⬇️资源覆盖从入门到进阶的LLM学习需求,适合学生、开发者及研究者。入门推荐Karpathy和吴恩达的课程,易懂且系统;复习推荐Hinton、Kiela及清华大学课程,深入且具启发性。通过理论学习与实践结合,可全面掌握大模型的核心知识与应用技能。

1. 大学课程

斯坦福大学
  • CS25: Transformers United V5 (2025)

image

  • 内容:探讨Transformer最新突破,邀请Google DeepMind的Denny Zhou、OpenAI的Karina Nguyen、Hongyu Ren及Meta的Andrew Brown等讲者。
  • 形式:免费开放,现场旁听或Zoom直播(每周二太平洋夏令时间15:00-16:20,北京时间周三06:00-07:20),视频上传至YouTube。
  • 资源:https://web.stanford.edu/class/cs25/, 第一期视频:https://www.youtube.com/watch?v=JKbtWimlzAE
  • 评价:前沿性强,适合跟踪最新研究动态,适合中高级学习者。
  • CS25: Transformers United (往期)
    • V2 - Geoffrey Hinton: Representing Part-Whole Hierarchies:提出GLOM模型,增强Transformer视觉任务表现,探讨自注意力机制瓶颈。
      • 链接:https://www.youtube.com/watch?v=CYaju6aCMoQ
      • 评价:★★★★☆,适合复习Transformer理论局限及视觉领域扩展。
    • V2 - Andrej Karpathy: Introduction to Transformers:系统讲解自注意力、多头注意力及Vision Transformer。
      • 链接:https://www.youtube.com/watch?v=XfpMkf4rD6E
      • 评价:★★★★★,入门必看,简洁清晰,适合初学者快速掌握Transformer核心。
    • V3 - Douwe Kiela: Retrieval Augmented Language Models:深入RAG技术,分析其解决幻觉和时效性问题的潜力。
      • 链接:https://www.youtube.com/watch?v=mE7IDf2SmJg
      • 评价:★★★★☆,复习RAG的绝佳资源,适合有基础的学习者。
    • V4 - Jason Wei & Hyung Won Chung:探讨LLM直观理解、扩展律及Transformer多模态潜力。
      • 评价:内容深入,适合中高级学习者复习LLM理论。
  • CS224N: Natural Language Processing with Deep Learning
    • 内容:全面NLP课程,覆盖深度学习技术及LLM。
    • 链接:https://web.stanford.edu/class/cs224n/
    • 评价:系统性强,适合中高级学习者深入学习NLP。
  • CS324: Large Language Models
    • 内容:LLM进阶研究。
    • 链接:https://stanford-cs324.github.io/winter2022/
    • 评价:适合研究导向的学习者,内容偏学术。
卡内基梅隆大学
  • 11-711 ANLP: Advanced Natural Language Processing

image

  • 内容:涵盖语言模型、序列建模、Transformer、提示与微调,提供课件下载。
  • 链接:https://phontron.com/class/anlp2024/lectures/
  • 评价:内容全面,适合中高级学习者复习NLP核心技术。
其他大学
  • 普林斯顿 COS 597G (2022): Understanding Large Language Models
    • 链接:https://www.cs.princeton.edu/courses/archive/fall22/cos597G/
    • 评价:理论性强,适合学术研究者。
  • 约翰霍普金斯 CS 601.471/671: NLP: Self-supervised Models
    • 链接:https://self-supervised.cs.jhu.edu/sp2023/index.html
    • 评价:专注自监督学习,适合中高级学习者。
  • 滑铁卢大学 CS 886: Recent Advances on Foundation Models
    • 链接:https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/
    • 评价:聚焦前沿基础模型,适合研究者。
  • 台湾大学 Introduction to Generative AI (2024)
    • 讲者:李宏毅
    • 链接:https://speech.ee.ntu.edu.tw/~hylee/genai/2024 spring.php
    • 评价:内容生动,适合中级学习者了解生成式AI。
  • 密歇根大学 LLMs and Transformers (2024)
    • 链接:https://www.ambujtewari.com/LLM-fall2024/
    • 评价:学术与实践结合,适合中高级学习者。

2. 在线课程与教程

DeepLearning.AI
  • Generative AI for Everyone (吴恩达)
    • 内容:生成式AI入门,介绍大模型概念与应用。
    • 链接:https://www.deeplearning.ai/courses/generative-ai-for-everyone/
    • 评价:★★★★☆,入门必看,通俗易懂,适合零基础学习者。
  • LLM Series (吴恩达)
    • 内容:全面LLM培训。
    • 链接:https://learn.deeplearning.ai/
    • 评价:内容丰富,适合中级学习者。
  • Getting Started with Mistral
    • 链接:https://www.deeplearning.ai/short-courses/getting-started-with-mistral/
    • 评价:实践性强,适合Mistral模型开发者。
  • Knowledge Graphs for RAG
    • 链接:https://www.deeplearning.ai/short-courses/knowledge-graphs-rag/
    • 评价:★★★★☆,复习RAG进阶应用的优质资源。
  • Multimodal RAG: Chat with Videos

image

  • 链接:https://www.deeplearning.ai/short-courses/multimodal-rag-chat-with-videos/
  • 评价:聚焦多模态RAG,适合中高级开发者。
OpenAI
  • OpenAI Academy

image

  • 内容:免费AI课程与社区,提供《提示词大师课》等,包含实时互动活动(仅英文)。
  • 链接:https://academy.openai.com/public/events
  • 评价:社区驱动,适合实践者与同行交流。
  • OpenAI Cookbook
    • 内容:OpenAI API使用示例。
    • 链接:https://github.com/openai/openai-cookbook
    • 评价:实用性强,适合API开发者。
Hugging Face
  • NLP Course
    • 内容:Transformer在NLP中的应用,包含代码示例。
    • 链接:https://huggingface.co/learn/nlp-course/chapter1/1
    • 评价:★★★★☆,入门必看,实践性强,适合有编程基础的初学者。
  • AI Agents Course
    • 链接:https://github.com/huggingface/agents-course
    • 评价:适合开发AI代理的实践者。
  • Hugging Face Learn
    • 链接:https://huggingface.co/learn
    • 评价:资源丰富,适合各阶段学习者。
微软
  • Generative AI for Beginners
    • 链接:https://github.com/microsoft/generative-ai-for-beginners
    • 评价:适合初学者,内容简洁。
  • State of GPT
    • 链接:https://www.youtube.com/watch?v=bZQun8Y4L2A
    • 评价:GPT技术概览,适合快速了解。
其他
  • Coursera: Prompt Engineering for ChatGPT
    • 链接:https://www.coursera.org/learn/prompt-engineering
    • 评价:提示工程入门,适合实践者。
  • Cohere LLM University
    • 链接:https://cohere.com/llmu
    • 评价:聚焦嵌入技术,适合开发者。
  • Weights & Biases AI Academy
    • 链接:https://www.wandb.courses/pages/w-b-courses
    • 评价:涵盖微调与LLMOps,适合中高级开发者。
  • Comet: LLM Evaluation
    • 链接:https://www.comet.com/site/llm-course/
    • 评价:LLM评估的系统课程,适合研究者。
  • Anthropic: Prompt Engineering Interactive Tutorial
    • 链接:https://github.com/anthropics/courses
    • 评价:交互式学习,适合提示工程实践。
  • Google: Generative AI for Developers
    • 链接:https://www.cloudskillsboost.google/paths/183
    • 评价:进阶开发者课程,内容深入。

3. 开源资源与教程

  • Andrej Karpathy
    • Neural Networks: Zero to Hero:神经网络与LLM系列。
      • 链接:https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
      • 评价:★★★★★,入门与复习必看,理论实践兼备。
    • Build nanoGPT:从头构建GPT模型。
      • 链接:https://github.com/karpathy/build-nanogpt
      • 评价:实践性强,适合动手学习。
    • LLM101n: Let’s Build a Storyteller:LLM开发实践。
      • 链接:https://github.com/karpathy/LLM101n
      • 评价:适合中级开发者。
    • Deep Dive into LLMs like ChatGPT:LLM深入讲解。
      • 链接:https://www.youtube.com/watch?v=7xTGNNLPyMI
      • 评价:内容全面,适合复习。
  • Mistral AI Cookbook:Mistral模型使用指南。
    • 链接:https://github.com/mistralai/cookbook
    • 评价:适合Mistral开发者。
  • LangGPT:提示工程学习。
    • 链接:https://github.com/langgptai/LangGPT
    • 评价:提示工程实践资源。
  • LLMs From Scratch (Datawhale):从零构建LLM。
    • 链接:https://github.com/datawhalechina/llms-from-scratch-cn
    • 评价:适合中文学习者实践。
  • Hands-on LLMs:金融顾问LLM开发。
    • 链接:https://github.com/iusztinpaul/hands-on-llms
    • 评价:应用驱动,适合开发者。
  • LLM Interview Notes:LLM面试技术准备。
    • 链接:https://github.com/wdndev/llm_interview_note
    • 评价:适合求职者。
  • LLM Technical Primer:LLM概念科普。
    • 链接:https://github.com/karminski/one-small-step
    • 评价:适合初学者快速了解。
  • LLMsBook:LLM资源集合。
    • 链接:https://github.com/liucongg/LLMsBook
    • 评价:资源全面,适合查阅。

4. 专题资源

  • RAG(检索增强生成)
    • ACL 2023 Tutorial:https://acl2023-retrieval-lm.github.io/
    • Learn RAG From Scratch:https://www.youtube.com/watch?v=sVcwVQRHIc8
    • RAG++: From POC to Production:https://www.wandb.courses/courses/rag-in-production
    • OpenRAG:https://openrag.notion.site/Open-RAG-c41b2a4dcdea4527a7c1cd998e763595
    • 评价:RAG是LLM应用热点,适合中高级学习者深入学习。
  • 扩散模型
    • 讲义:https://www.dropbox.com/scl/fi/gmwhx7jfi2nvm8pudn5it/lecture_diffusion_models.pdf
    • 评价:适合生成模型研究者。
  • 视觉Transformer
    • Smol Vision:https://github.com/merveenoyan/smol-vision
    • 评价:适合视觉模型开发者。
  • 交互式可视化
    • Transformer Explainer:https://poloclub.github.io/transformer-explainer/
    • 评价:直观理解Transformer,适合初学者。

5. 社区与中文资源

  • 清华大学NLP公开课(刘知远团队)
    • 内容:大模型原理、微调及中文NLP应用。
    • 链接:https://www.bilibili.com/video/BV1UG411p7zv/
    • 评价:★★★★☆,中文学习者复习必看,内容本地化。
  • PromptEngineering.org:提示工程资源。
    • 链接:https://promptengineering.org/
    • 评价:适合实践者。
  • LLM Agents Course:LLM代理开发。
    • 链接:https://llmagents-learning.org/f24
    • 评价:适合前沿应用开发者。

入门与复习必看课程

入门必看

  1. Andrej Karpathy - Neural Networks: Zero to Hero
    • 理由:从零讲解神经网络到LLM,理论与代码结合,教学生动。
    • 适合:零基础或有编程背景的初学者。
    • 链接:https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
  2. DeepLearning.AI - Generative AI for Everyone
    • 理由:吴恩达主讲,通俗易懂,适合非技术背景者快速了解AI。
    • 适合:完全零基础学习者。
    • 链接:https://www.deeplearning.ai/courses/generative-ai-for-everyone/
  3. Hugging Face - NLP Course
    • 理由:实践导向,结合Hugging Face工具,快速上手NLP任务。
    • 适合:有Python基础的初学者。
    • 链接:https://huggingface.co/learn/nlp-course/chapter1/1
  4. 斯坦福 CS25 V2 - Andrej Karpathy: Introduction to Transformers
    • 理由:40分钟精炼讲解Transformer核心,权威且清晰。
    • 适合:初学者快速掌握注意力机制。
    • 链接:https://www.youtube.com/watch?v=XfpMkf4rD6E

复习必看

  1. 斯坦福 CS25 V2 - Geoffrey Hinton: Representing Part-Whole Hierarchies
    • 理由:Hinton的GLOM模型提供Transformer局限性与未来方向的洞见。
    • 适合:有基础的学习者梳理理论。
    • 链接:https://www.youtube.com/watch?v=CYaju6aCMoQ
  2. 斯坦福 CS25 V3 - Douwe Kiela: Retrieval Augmented Language Models
    • 理由:系统讲解RAG,涵盖理论与最新架构,巩固应用知识。
    • 适合:熟悉Transformer的学习者。
    • 链接:https://www.youtube.com/watch?v=mE7IDf2SmJg
  3. 清华大学NLP公开课(刘知远团队)
    • 理由:中文讲解,覆盖大模型全貌及中文应用,适合本地化复习。
    • 适合:中文背景 Andrej Karpathy - Neural Networks: Zero to Hero
    • 理由:从零讲解神经网络到LLM,理论与代码结合,教学生动。
    • 适合:零基础或有编程背景的初学者。
    • 链接:https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
  4. DeepLearning.AI - Generative AI for Everyone
    • 理由:吴恩达主讲,通俗易懂,适合非技术背景者快速了解AI。
    • 适合:完全零基础学习者。
    • 链接:https://www.deeplearning.ai/courses/generative-ai-for-everyone/
  5. Hugging Face - NLP Course
    • 理由:实践导向,结合Hugging Face工具,快速上手NLP任务。
    • 适合:有Python基础的初学者。
    • 链接:https://huggingface.co/learn/nlp-course/chapter1/1
  6. 斯坦福 CS25 V2 - Andrej Karpathy: Introduction to Transformers
    • 理由:40分钟精炼讲解Transformer核心,权威且清晰。
    • 适合:初学者快速掌握注意力机制。
    • 链接:https://www.youtube.com/watch?v=XfpMkf4rD6E

复习必看

  1. 斯坦福 CS25 V2 - Geoffrey Hinton: Representing Part-Whole Hierarchies
    • 理由:Hinton的GLOM模型提供Transformer局限性与未来方向的洞见。
    • 适合:有基础的学习者梳理理论。
    • 链接:https://www.youtube.com/watch?v=CYaju6aCMoQ
  2. 斯坦福 CS25 V3 - Douwe Kiela: Retrieval Augmented Language Models
    • 理由:系统讲解RAG,涵盖理论与最新架构,巩固应用知识。
    • 适合:熟悉Transformer的学习者。
    • 链接:https://www.youtube.com/watch?v=mE7IDf2SmJg
  3. 清华大学NLP公开课(刘知远团队)
    • 理由:中文讲解,覆盖大模型全貌及中文应用,适合本地化复习。
    • 适合:中文背景的学习者。
    • 链接:https://www.bilibili.com/video/BV1UG411p7zv/
  4. DeepLearning.AI - Knowledge Graphs for RAG
    • 理由:聚焦RAG进阶应用,理论与实践结合。
    • 适合:熟悉RAG的学习者。
    • 链接:https://www.deeplearning.ai/short-courses/knowledge-graphs-rag/

学习路径建议

入门路径(1-2个月)

  1. 概念入门:学习《Generative AI for Everyone》(1周),快速了解大模型全貌。
  2. Transformer基础:观看《Andrej Karpathy - Introduction to Transformers》(1天),掌握自注意力机制。
  3. 实践上手:通过《Hugging Face - NLP Course》训练简单模型(2-3周)。
  4. 深入代码:完成《Andrej Karpathy - Build nanoGPT》,从头实现GPT(2-3周)。

复习路径(1个月)

  1. 理论梳理:重温《Geoffrey Hinton - Representing Part-Whole Hierarchies》(1天),理解Transformer局限性。
  2. RAG巩固:学习《Douwe Kiela - Retrieval Augmented Language Models》和《Knowledge Graphs for RAG》(1-2周)。
  3. 中文视角:复习《清华大学NLP公开课》,梳理本地化应用(1周)。
  4. 前沿跟踪:关注CS25 V5最新讲座(https://web.stanford.edu/class/cs25/),了解2025年进展。

其他建议

  • 实践驱动:利用nanoGPT、LLMs From Scratch等项目进行开发实践。
  • 社区参与:加入OpenAI Academy或Hugging Face社区,与专家交流。
  • 持续学习:定期关注DeepLearning.AI、斯坦福CS25等平台更新。

{
   "target":"简单认识我",
   "selfInfo":{
        "genInfo":"大厂面试官,中科院自动化所硕士(人工智能),从事数据闭环业务、RAG、Agent等,承担技术+平台的偏综合性角色。善于调研、总结和规划,善于统筹和协同,喜欢技术,喜欢阅读新技术和产品的文章与论文",
        "contactInfo":"abc061200x, v-adding disabled",
        "slogan":"简单、高效、做正确的事",
         "extInfo":"喜欢看电影、喜欢旅游、户外徒步、阅读和学习,不抽烟、不喝酒,无不良嗜好"
   } 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值