牛牛的呱数-------------------------思维(bfs)

在这里插入图片描述
在这里插入图片描述

解析:
因为n和p的范围都非常小,所以我们可以bfs求解。
对于每个数连接的时候,都把这个数放到左边。假设原始有一个数ai,长度leni
现在放入bi 那么连接起来就是 bi*10leni+ai.

设 f[x,10leni] 表示在当前模数p下的x。和下一个数要加进来乘上的长度10leni
每次都连接n个数,跑个Dijkstra ;
当x=0时,我们每次取最小

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+1000;
int len[N],pw[N],d[N];
int f[1005][1005];
int n,p;
string s;
struct node
{
	int x,y,length;
	bool operator > (const node &W) const {
		return length>W.length;
	}
};
int main()
{
	
	scanf("%d %d",&n,&p);
	pw[0]=1;
	for(int i=1;i<=N;i++) pw[i]=(pw[i-1]*10)%p;
	for(int i=1;i<=n;i++)
	{
		cin>>s;
		len[i]=s.size();
		for(int j=0;j<len[i];j++)
		{
			d[i]=(d[i]*10+(s[j]-'0'))%p;
		}
	}
	memset(f,0x3f,sizeof f);
	int ans=f[0][0];
	f[0][1]=0;
	priority_queue<node,vector<node> ,greater<node> >q;
	q.push({0,1,0});
	while(q.size())
	{
		auto t=q.top();
		q.pop();
		for(int i=1;i<=n;i++)
		{
			node tmp;
			tmp.x=(t.x+d[i]*t.y)%p;
			tmp.y=(t.y*pw[len[i]])%p;
			tmp.length=(t.length+len[i]);
			if(tmp.x==0) ans=min(ans,tmp.length);
			if(f[tmp.x][tmp.y]>tmp.length)
			{
				f[tmp.x][tmp.y]=tmp.length;
				q.push(tmp);
			}
		}
		
	}
	if(ans>=0x3f3f3f3f) ans=-1;
	cout<<ans<<endl;
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值