算法学习
LI.T.F
一枚不断努力ing的在校大学生!
展开
-
算法学习笔记(二):逻辑回归算法
逻辑回归定义: 逻辑回归是一种解决二分类(0 or 1)问题的机器学习方法,用于估算某种事物的可能性。 逻辑回归和线性回归的关系 联系 都是广义线性回归模型(generalized linear model) 逻辑回归去掉Sigmoid映射函数的话,就算是一个线性回归。 区别 线性回归得到的是一个连续的结果,而逻辑回归得到的是一个离散的结果。 优缺点 优点 高效,不需要太大的计算量,又通俗易...原创 2019-08-09 16:13:42 · 637 阅读 · 0 评论 -
算法学习笔记:线性回归算法
这虽然是篇关于算法的学习笔记,但主要是在机器学习的范畴内的算法学习,同时这也是我正式入门机器学习的第一篇学习笔记,所以这里首先介绍一下机器学习的有关概念 机器学习概念介绍 有监督学习 它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。一句话:给定数据,预测标签。 无监督学习 它从无标记的训练数据中推断结论。最典型的无监督学习就是聚类分析,它...原创 2019-08-07 20:43:19 · 239 阅读 · 0 评论 -
算法学习笔记(三):决策树学习
一、信息论基础 熵(信息熵):衡量不确定性的程度。熵值越大,不确定程度越大,也就是说明所含信息越多;相反,熵值越小,不确定程度越小,也就是说明所含信息越小;在决策树的应用中,熵用来衡量样本的纯度,熵越小,样本越纯,表明分类的效果越好。 其公式如下: H(X)=−∑k=1mpklnpkH(X)=-\sum_{k=1}^mp_klnp_kH(X)=−k=1∑mpklnpk 其中,pkp_kp...原创 2019-08-11 20:39:09 · 314 阅读 · 0 评论