- 博客(9)
- 收藏
- 关注
原创 NLP事件检测顶刊顶会模型汇总-2015-2020
目前的基于GCN的事件检测的方法没有考虑依赖标签的类型。提出了EE-GCN模型,同时融合句法结构和依赖标签的类型,通过依赖上下文的方式,学习和更新关系表示。我们提出了一种事件提取的方法,它使用漂白的语句来提供一个模型来访问注释手册中包含的信息。我们的模型用从文本中提取的值来逐步细化语句。我们还证明了对罕见或根本没有的事件类型进行预测的可行性。
2023-08-02 16:50:56 210
原创 NLP事件检测顶刊顶会模型汇总-2021
跨句子事件抽取旨在同时识别篇章内多个事件,本文提出一种多层双向网络(MLBiNet)来同时捕获篇章级的事件关联和语义信息。最后,通过堆叠多个双向解码器并提供跨句子信息,形成一个多层双向标记架构从而迭代地跨句子传播信息。提出一个Semantic and Statistic-Joint Discriminative Network用于事件检测任务,使用语义特征(上下文)和每个词的统计特征,进行决策,在ACE 2005和KBP 2015数据集上达到SOTA。
2023-08-02 16:49:44 172
原创 NLP事件检测顶刊顶会模型汇总-2022
然而当前的基于prompt的方法可能存在精度低的问题,因为它们没有引入与事件相关的语义知识(例如,词性、语义相关性等)。然而这些基于句法的方法的一个副作用是它们可能会混淆不同的句法关系,并倾向于引入冗余或嘈杂的信息,这可能会导致性能下降。具体来说,首先构建一个对偶关系图,将句法和语义关系聚合到图中的关键节点,以便从多个角度(即句法和语义视图)全面捕获与事件相关的信息。•为了实现社会事件的自动聚类检测,提出了一种新的深度强化学习引导的基于密度的空间聚类模型DRL-DBSCAN。
2023-08-02 16:45:07 1052
原创 NLP事件抽取顶刊顶会模型汇总-2015-2016
RBPB模型使用了trigger、句子的表示以及模式特征(pattern features)来共同作为trigger classification任务的输入特征,并使用了正则化方法来利用arguments之间的联系。在本文中,我们提出了一个新颖的方法,模型之间的依赖关系的变量的事件,实体,及其关系,并执行联合推断这些变量的文档。我们对提出的模型的一般设置和 DA 设置的评价表明了非连续机制的有效性。在本文中,我们提出了一种跨语言的事件提取方法,该方法利用与语言相关和与语言无关的特征来训练多种语言。
2023-05-11 16:08:56 222
原创 NLP事件抽取顶刊顶会模型汇总-2017-2018
使用Freebase和FrameNet自动得标注事件抽取数据,使用Freebase找到关键的论元,使用FrameNet过滤带噪声的触发词和扩展触发词。基于特征的方法捕捉文档级别的信息,这些特征需要人工设置且存在错误传播,同时通过规则在文档级发现事件间信息,这些规则难以完整。的框架,将事件提及和类型映射到同一个语义空间,根据相似性得到相应的类型。基于表示的方法,由于受到无监督训练过程的限制,文档级别的表示不能具体地捕捉事件相关的信息。,映射每一个事件提及到一个在目标事件本体中的具体类型。
2023-05-11 16:05:49 167 1
原创 NLP事件抽取顶刊顶会模型汇总-2019
与以往的在多个步骤或多个分离的任务中进行实体和事件检测的方法不同,本文的方法捕获了实体和事件间的结构依赖信息(by using a incremental left to right reading order)在这项工作中,我们提出了一个利用深度学习中共享的隐藏表示,从而预测实体类型,triggers,arguments roles 的联合模型,这个模型目前在事件提取具有最先进的性能。(3)我们验证事件提取基于我们的事件模式和事件提取的结果模型可以用于新闻摘要,也可以用于新闻摘要有望用于其他实际应用。
2023-05-09 16:14:17 274 1
原创 NLP事件抽取顶刊顶会模型汇总-2020
提出一个多轮的问答框架用于事件抽取,可以充分利用触发词、事件类型和论元之间的交互信息,同时多轮的策略可以捕捉相同事件类型中不同论元角色之间的依赖。目前pipeline和joint的事件抽取,都存在冗余的实体-事件对信息,从而带来可能的错误。本篇论文使用两种类型的机器阅读理解(MRC)任务:抽取式(答案为文本中的连续span),yes/no式(答案为yes或者no)的结构进行联合事件抽取,充分探索了事件抽取子任务之间的深层信息交互,并解决了多个事件和错误匹配问题。的事件检测的方法没有考虑依赖标签的类型。
2023-04-18 15:33:39 891 1
原创 NLP事件抽取顶刊顶会模型汇总-2021
本文提出GIT模型实现DEE,贡献为:① 构建了一个具有提及节点和句子节点的异构图交互神经网络,从全局角度联合建模文档中的实体和句子,从而捕捉分散在不同句子中的事件元素的全局上下文;现有的方法面临的两个挑战是:① 目标 事件元素可能分散在各句子之间,需要模型对cross-sentence的上下文有全面的理解;② 一个文档中可以同时包含多个相关事件,对事件之间的相互依赖关系进行建模仍然是篇章级事件抽取的一项挑战;提出了一个新的数据集(论文没有给公开的数据集链接), 是本文的主要贡献点。
2023-04-14 10:57:12 1034 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人