知识复杂性指数KCI的公式解读-经济地理学

知识复杂性指数KCI的公式解读-经济地理学

来源于一篇经济地理发表的论文

主要数据:专利 Patents
在这里插入图片描述

第一个公式:Diversity

可以简单理解为所有具有优势的技术在城市c的数量总和,表示了城市c在技术发展上的总体优势趋势。一项技术是否具有优势,通过与背景值的比较,在这篇论文开头详细的介绍。
在这里插入图片描述

第二个公式:Ubiquity

类似的,这个指数可以简单理解为具有优势的技术i所分布的城市数量总和,表示了技术i在各个城市的总体分布趋势。

第三个公式:KCI_cities

3、4公式里面就是一个加权平均不断迭代的过程,比如公式3在第1次迭代的时候,分子表示一个城市里每一项具有优势的技术数量(即Mc,i)乘以该技术的Ubiquity值(即Ki,0,参照公式2,也就是Mc,i求和的Mc,i再求和),分母表示这个城市所有具有优势的技术总数量(即Diversity=Kc,0),这样算出了KCIcities=Kc,1;然后公式3在下一次迭代时,只需要更新Ubiquity值到ki,1,这时候Ki,1就需要用到公式4在第一次迭代时的计算结果。
在这里插入图片描述
**简单理解就是:SUM(单项
sum)/sum,然后对sum值进行迭代,每一次公式3中的迭代项使用上一次迭代时公式4得到的结果。**

第四个公式:KCI_tech

同理可理解公式4。

这篇文章是对越来越多的负面文献的回应,这些文献表明大多数现代经济理论——包括一般均衡理论——的实际相关性有限,因为它们需要进行大量不可行的计算。 许多结果是对计算机科学文献中抽象复杂性界限的翻译。 我认为这些界限并不构成困难的经济计算是“不可能的”的证据。 有几个原因。 首先,复杂性界限通常基于最坏情况分析,但不清楚最坏情况是否与实际情况相关。 我认为对于许多经济问题,平均案例分析更合适,并提供平均案例复杂度远低于最坏案例复杂度的问题示例。 其次,复杂度界限只告诉我们计算需求随问题规模或维度增长的速度:它们通常不能告诉我们特定问题是否可以用给定的计算资源量解决到指定的准确度. 经济可能正在解决一个非常困难的计算问题,但它的集体计算资源也非常大:它可以被视为一个大规模并行处理器,其单个处理元素是数百万个独立的经济主体。 第三,我猜想经济已经进化得非常复杂?软件? 用于处理经济计算的复杂性,包括去中心化、共享内存以及利用经济的特殊附加结构的能力。 我提供了一些示例,其中解决找到有效资源分配问题的分散式方法相对于集中式方法在计算上是有效的。 具体来说,我表明分散式方法的最坏情况计算复杂性受一个函数的限制,该函数随经济体中的代理数量 K 线性增加,而集中式方法的最坏情况复杂性在 K 中呈指数级快速增长。我认为权力下放还允许经济自动利用经济中存在的附加结构,因此类似的“计算不变规模收益? 财产也适用于经济中商品和服务的总数,d。 这一结果表明,经济学家难以解决大规模可计算一般均衡问题的原因是他们使用了错误的硬件和软件。 经济学家应该设计他们的计算来模拟实体经济,使用大规模并行计算机和分散式算法,允许竞争均衡作为“紧急计算”出现。 我的结论是,经济学家避免与解决现实的大规模一般均衡模型相关的计算负担的最有希望的方法是采用“基于代理的? 建模策略,其中均衡价格和数量从代理的分散交互中内生地出现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值