机器学习
英雄不问出处Prome
这个作者很懒,什么都没留下…
展开
-
科比生涯数据分析——利用随机森林进行分类
1.数据读取与介绍导入相关库及模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.model_selection import KFold利用pandas进行数据...原创 2019-02-27 20:51:10 · 2046 阅读 · 2 评论 -
用python进行时间序列分析(一)
时间序列分析相关概念一、用python生成时间序列1.几种常见的时间序列2.data_range()函数—创建时间序列3.truncate()过滤函数4.时间戳可以转化为时间周期二、数据重采样三、pandas滑动窗口1.制作pandas滑动窗口2.数据可视化四、数据平稳性与差分法1.平稳性2.差分法五、ARIMA模型1.ARIMA(p,d,q)模型一、用python生成时间序列首先,需要导入p...原创 2019-02-26 19:04:43 · 3867 阅读 · 0 评论 -
信用卡欺诈案例数据分析——利用逻辑回归进行分类
1.数据读取import pandas as pdimport matplotlib.pyplot as pltimport numpy as np%matplotlib inlinedata = pd.read_csv("creditcard.csv")data.head()展示数据基本信息,如缺失值,字段类型等等data.info()2.数据预处理#统计不同标签对应...原创 2019-03-02 17:52:07 · 2657 阅读 · 0 评论 -
贷款利润最大化——利用随机森林和逻辑回归进行分类
1.数据读取这里有一份贷款数据,包括与贷款相关信息,现有主要任务:对贷款人借贷状态(全额借贷、不予借贷)进行分类,从而实现贷款利润最大化。import pandas as pdloans_2007 = pd.read_csv('LoanStats3a.csv', skiprows=1)half_count = len(loans_2007) / 2#删除空值记录loans_2007 =...原创 2019-03-03 17:06:18 · 691 阅读 · 0 评论 -
用户流失预警—机器学习分类简单案例分析
该案例主要目的:根据用户一系列属性,对用户是否流失做出合理判断1.读取数据from __future__ import divisionimport pandas as pdimport numpy as np#读取数据churn_df = pd.read_csv('churn.csv')col_names = churn_df.columns.tolist()#打印列名prin...原创 2019-03-04 09:37:45 · 1708 阅读 · 4 评论