图中不重复K条路的最大值中最小值
题意
无向图中起点到终点找出不重复的K条路,求出这K条路中的最长路径的最小值。
思路
最大中的最小。看能不能二分。
二分最长路径,二分取值mid,若judge函数,可以定义为能不能找出K条路。
0-mid中的路径,mid值越大越可能找出K条路
现在的问题就是:能不能用最大流判断出0-mid长度走出K条路
处理
每次把一条边中权重小于mid的边,f[i] = 1,else f[i]=0。然后走网络流,因为容量为1,那么这些路肯定不重复。
代码
#include<iostream>
#include<cstring>
using namespace std;
const int N = 210,M =80010,INF = 1e8;
int h[N],e[M],ne[M],w[M],f[M],idx;
int d[N],q[N],cur[N];
int n,m,S,T,K;
void add(int a,int b,int c){
e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx++;
e[idx] = a,w[idx] = c,ne[idx] = h[b],h[b] = idx++;
}
bool bfs(){
memset(d,-1,sizeof d);
int hh = 0,tt = 0;
d[S] = 0,q[0] = S,cur[S] = h[S];
while(hh<=tt){
int t = q[hh++];
for(int i = h[t];i!=-1;i = ne[i]){
int j = e[i];
if(d[j] == -1&&f[i]){
d[j] = d[t] + 1;
cur[j] = h[j];
if(j == T) return true;
q[++tt] = j;
}
}
}
return false;
}
int find(int u,int limit){
if(u == T) return limit;
int flow = 0;
for(int i = cur[u];i!=-1&&flow<limit;i = ne[i]){
cur[u] = i;
int j = e[i];
if(d[j] == d[u] + 1&&f[i]){
int t = find(j,min(f[i],limit - flow));
if(!t) d[j] = -1;
else flow +=t,f[i] -= t,f[i^1] += t;
}
}
return flow;
}
int dinic(){
int r = 0,flow;
while(bfs()) while(flow = find(S,INF)) r += flow;
return r;
}
bool check(int mid){
for(int i = 0;i<idx;i++){
if(w[i]>mid) f[i] = 0;
else f[i] = 1;
}
int res = dinic();
return res >= K;
}
int main(){
memset(h,-1,sizeof h);
scanf("%d%d%d",&n,&m,&K);
S = 1,T = n;
for(int i = 1;i<=m;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
int l = 1,r = 1e6;
while(l<r){
int mid = (l + r)>>1;
if(check(mid)) r = mid;
else l = mid + 1;
}
cout<<r<<endl;
return 0;
}