博弈论(1)——巴什博弈

一、巴什博弈(Bash Game,同余理论):
只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报m个,谁能报到n者胜。

例题
hdu - 1846

十年前读大学的时候,中国每年都要从国外引进一些电影大片,其中有一部电影就叫《勇敢者的游戏》(英文名称:Zathura),一直到现在,我依然对于电影中的部分电脑特技印象深刻。
今天,大家选择上机考试,就是一种勇敢(brave)的选择;这个短学期,我们讲的是博弈(game)专题;所以,大家现在玩的也是“勇敢者的游戏”,这也是我命名这个题目的原因。
当然,除了“勇敢”,我还希望看到“诚信”,无论考试成绩如何,希望看到的都是一个真实的结果,我也相信大家一定能做到的~


各位勇敢者要玩的第一个游戏是什么呢?很简单,它是这样定义的:
1、 本游戏是一个二人游戏;
2、 有一堆石子一共有n个;
3、 两人轮流进行;
4、 每走一步可以取走1…m个石子;
5、 最先取光石子的一方为胜;


如果游戏的双方使用的都是最优策略,请输出哪个人能赢。

Input

输入数据首先包含一个正整数C(C<=100),表示有C组测试数据。
每组测试数据占一行,包含两个整数n和m(1<=n,m<=1000),n和m的含义见题目描述。

Output

如果先走的人能赢,请输出“first”,否则请输出“second”,每个实例的输出占一行。

Simple Input

2
23 2
4 3

Simple Output

first
second

参考代码

#include<iostream>
#include<cstdio>
using namespace std;
int main(){
    int cnt;
    scanf("%d", &cnt);
    while(cnt--){
        int n, m;
        scanf("%d%d", &n, &m);
        if(n % (m + 1)){
            printf("first\n");
        }else{
            printf("second\n");
        }

    }
    return 0;
}

hdu - 1847

Problem Description

大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。
“升级”?“双扣”?“红五”?还是“斗地主”?
当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、 总共n张牌;
2、 双方轮流抓牌;
3、 每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、 抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。
Good luck in CET-4 everybody!

Input

输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。

Output

如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。

Sample Input

1
3

Sample Output

Kiki
Cici

题目理解
无论按照哪种策略,最优的结果都是会剩下这三种情况剩下3,2,1张牌
你看,比如我是先手,对方是后手,那3的话无论如何都是后手赢
6的话,我取4对面可以取2,对面赢;我取2的话对面可以取4,还是对面赢;我取1对面可以先取2(这是最优的策略,因为对面足够聪明,他取1或者4的话他就输了),然后现在还剩3张牌,这就回到了3张牌的情况
9也同理。我取8对面取1,对面赢;我取4对面取2(最优策略),还剩3张牌,又回到了三张牌的情况;我取2的话,对面若取4那么回到3的情况,对面若取2那么回到5的情况,因为5的情况可以拆成3+2,我必赢,因为对面很聪明所以对面不会选择取2,对面若取1的话那还是回到刚才讨论的6的情况。所以最终还是回到3张牌的情况
所以往后3的倍数都可以递归回3
还有一个问题就是,有一些素数并不能直观的看出来是谁赢。但是如果你分析一下5,11,13,就能看出来素数最后也是先手赢

所以就看给的牌数是否是三的倍数,以此来解题

以下为ac代码

#include<iostream>
#include<cstdio>
using namespace std;
int main(){
    int n;
    while(~scanf("%d", &n)){
        if(n <= 0) break;
        if(n % 3) printf("Kiki\n");
        else printf("Cici\n");
    }
    return 0;
}

关于博弈论巴什博奕理论部分参考其他博客
地址

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值