一、n皇后问题
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。(不相互攻击即不能放在相同行,相同列,或对角线上)
class GFG
{
static int N = 4;
/* 用于判断次对角线是否有皇后 ,row-col是一个常数,但是为了防止数组出现负索引,所以加上(N-1)。即i-col+n-1。*/
static int []ld = new int[30];
/* rd 是一个数组,它的索引表示的是 row+col
这个数组是用来判断有主对角线上是否有皇后。*/
static int []rd = new int[30];
/*column array where its indices indicates column and
used to check whether a queen can be placed in that
row or not*/
static int []cl = new int[30];
/* A utility function to print solution */
static void printSolution(int board[][])
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
System.out.printf(" %d ", board[i][j]);
System.out.printf("\n");
}
}
/* A recursive utility function to solve N
Queen problem */
static boolean solveNQUtil(int board[][], int col)
{
/* 如果所有皇后都被放置。 */
if (col >= N)
return true;
/* 在这一列中,试着把皇后放在各行 */
for (int i = 0; i < N; i++)
{
/* 检查皇后是否可以放在board[i][col] */
/* 检查可不可以放在board[row][col].
我们只需要检查所在的行有没有已经放皇后(cl[i])
所在的正对角线(rd[row+col])是否已经放皇后
和次对角线(ld[row-col+n-1])是否已经放皇后。
*/
if ((ld[i - col + N - 1] != 1 &&
rd[i + col] != 1) && cl[i] != 1)
{
/* 可以把皇后放在 board[i][col] */
board[i][col] = 1;
ld[i - col + N - 1] =
rd[i + col] = cl[i] = 1;
/* 递归着放接下去的皇后 */
if (solveNQUtil(board, col + 1))
return true;
/* 如果把皇后放在board[i][col] 不能解决问题,
那我们就把皇后从这个位置擦去,
重新安排这个皇后的位置。这就是回溯。
*/
board[i][col] = 0; // BACKTRACK
ld[i - col + N - 1] =
rd[i + col] = cl[i] = 0;
}
}
/* 如果在这一列任何行都不能放皇后。 */
return false;
}
二、2n皇后问题
这道题目是N皇后问题的变形,增加了两个限制条件:
- 设置棋盘为0的位置无法放置皇后
- 有黑皇后和白皇后两种
每个皇后用三个数组分别保存N列的情况, 2 N − 1 2N-1 2N−1条正斜线, 2 N − 1 2N-1 2N−1条反斜线的皇后情况,判断是否能放皇后即可。区别是这里用到两层循环,分别放黑皇后和白皇后。当然回溯结束还要恢复到初始情况进行下一行的回溯.
import java.util.Scanner;
public class Main {
private static final int MAX_N = 8;
private Scanner sc;
private int n; // 棋盘大小
private int[][] board; // 棋盘情况,1可以放皇后,0不能放皇后
// 每列的皇后情况,true有,false没有,下标从0开始
private boolean[] columnBlack;
private boolean[] columnWhite;
// 正斜线的皇后情况,true有,false没有,下标从0开始
private boolean[] slashBlack;
private boolean[] slashWhite;
// 反斜线的皇后情况,true有,false没有,下标从1开始
private boolean[] backSlashBlack;
private boolean[] backSlashWhite;
private int solution; // 放法的数量
public Main() {
init(); // 初始化
sc = new Scanner(System.in);
while (sc.hasNext()) {
input(); // 输入棋盘情况
solution = 0; // 初始0种放法
backTrack(0); // 回溯,第0行开始
System.out.println(solution);
}
sc.close();
}
private void init() {
board = new int[MAX_N][MAX_N]; // 棋盘
columnBlack = new boolean[MAX_N]; // 列
columnWhite = new boolean[MAX_N];
slashBlack = new boolean[2 * MAX_N - 1];// 斜线
slashWhite = new boolean[2 * MAX_N - 1];
backSlashBlack = new boolean[2 * MAX_N];// 反斜线
backSlashWhite = new boolean[2 * MAX_N];
}
private void input() {
n = sc.nextInt();
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
board[i][j] = sc.nextInt();
}
}
}
private void backTrack(int row) {
if (row >= n) { // 回溯结束条件
solution++;
return;
}
for (int i = 0; i < n; i++) { // 在第i列上放黑皇后
if (0 == board[row][i]) { // row行i列是否能放皇后
continue; // 0,不能放
}
if (columnBlack[i]) { // i列上是否有黑皇后
continue; // 有,不能放
}
// 正反斜线上是否有皇后
if (slashBlack[row + i] || backSlashBlack[n - row + i]) {
continue; // 有,不能放
}
// 可以放黑皇后
columnBlack[i] = true;
slashBlack[row + i] = true;
backSlashBlack[n - row + i] = true;
for (int j = 0; j < n; j++) { // j列上放白皇后
if (j == i || 0 == board[row][j]) {// 有黑皇后或者不能放皇后
continue;
}
if (columnWhite[j]) { // 第j列是否有白皇后
continue; // 有,不能放
}
// 正反斜线是否有白皇后
if (slashWhite[row + j] || backSlashWhite[n - row + j]) {
continue; // 有不能放
}
// 可以放白皇后
columnWhite[j] = true;
slashWhite[row + j] = true;
backSlashWhite[n - row + j] = true;
// 回溯下一行
backTrack(row + 1);
// 下层回溯结束,恢复白皇后情况
columnWhite[j] = false;
slashWhite[row + j] = false;
backSlashWhite[n - row + j] = false;
}
// 下层回溯结束,恢复黑皇后情况
columnBlack[i] = false;
slashBlack[row + i] = false;
backSlashBlack[n - row + i] = false;
}
}
public static void main(String[] args) {
new Main();
}