异常检测
文章平均质量分 93
蓝棠
这个作者很懒,什么都没留下…
展开
-
异常检测Task05:高维异常
Task05:高维异常主要内容:Feature Bagging孤立森林1、高维数据异常检测特异性介绍高维数据异常检测是指在现实生活中,一些数据集往往具有较多的维度,数据维度的增加一方面使得数据的大小飞快增加,另一方面可能会出现数据稀疏性,这种状况被称为维度诅咒。维度诅咒会使得距离的计算出现问题,进而对聚类方法也造成了困难。特别在对距离的计算上,因为是高维的数据,所有点的距离几乎都是相等的,基于距离进行异常点判断可能会失效2、高维数据异常检测思路1、通过主成分法,进行降维,选取低特征值的降原创 2021-01-25 01:52:00 · 281 阅读 · 0 评论 -
异常检测——基于相似度的方法
异常检测——基于相似度的方法Github主要内容包括:基于距离的度量基于密度的度量1.基于距离的度量基于距离的度量去解决问题的最简单方法是使用嵌套循环。 第一层循环遍历每个数据,第二层循环进行异常判断,需要计算当前点与其他点的距离,一旦已识别出多于 kkk 个数据点与当前点的距离在 DDD 之内,则将该点自动标记为非异常值。 这样计算的时间复杂度为O(N2)O(N^{2})O(N2),当数据量比较大时,这样计算是及不划算的。 因此,需要修剪方法以加快距离计算。1.1基于单元格的方法基于单原创 2021-01-22 02:02:18 · 228 阅读 · 0 评论 -
异常检测常用方法及库2021-01-14
异常检测1、异常检测的含义识别与正常数据不同的数据,与预期行为差异大的数据。如信用卡欺诈,工业生产异常,网络流里的异常(网络侵入)等问题,针的是少数事件。1.1 异常类别-** 点异常**:指的是少数个体实例是异常的,大多数个体实例是正常的,例如正常人与病人的健康指标;上下文异常:又称上下文异常,指的是在特定情境下个体实例是异常的,在其他情境下都是正常的,例如在特定时间下的温度突然上升或下降,在特定场景中的快速信用卡交易;群体异常:指的是在群体集合中的个体实例出现异常的情况,而该个体实例自身可原创 2021-01-14 11:49:17 · 196 阅读 · 0 评论 -
datawhale异常检测——线性方法探究
异常检测——线性相关方法breast-cancer-unsupervised-ad数据集主要涉及内容:- 线性回归- 主成分分析其余知识点:1、seaborn绘图https://blog.csdn.net/unixtch/article/details/788206542、seaborn各式热图绘制https://blog.csdn.net/sunchengquan/article/details/785732443、 f,ax = plt.subplots(figsize = (14,原创 2021-01-19 02:26:30 · 287 阅读 · 0 评论 -
异常检测——基于统计学方法(参数方法、非参数方法、HBOS、pyod库)
异常检测——基于统计学方法(参数方法、非参数方法、HBOS、pyod库)涉及知识点统计学异常检测的思想基于参数方法的异常检测基于非参数方法的异常检测HBOSPython中PyOD库生成toy example并调用HBOS实例1、统计学中对异常检测的思想统计学方法对异常检测的思想是在于假定和学习数据符合一个具体的模型或分布,而当给定的具体数据在假设模型中出现概率较低的时候,就认为是异常数据。 **其有效性高度依赖于对给定的模型所做的假定的统计模型是否成立**。在其中通过事先给定模型的方法原创 2021-01-16 02:01:56 · 2109 阅读 · 2 评论