- 博客(10)
- 收藏
- 关注
原创 项目实训——后端篇7:用户反馈功能Feedback
Feedback的功能主要是记录用户的对智能问诊平台的反馈信息,包括一些bug或者用户建议,以便管理者能看到并及时做出调整。
2024-06-24 04:07:25 300
原创 项目实训——后端篇6:基于MING模型的简单智能对话服务MingAPIService的实现
MING本身作为医疗大模型,其对于医疗领域问题的回答质量要比Qwen好,专业性也更强(毕竟是基于Qwen微调的),因此使用智能问诊反而显得有点冗余。但即便如此,搜集病人的病历信息加入对话信息里,仍然是增强对话质量的选择之一。
2024-06-24 03:08:28 289 1
原创 项目实训——后端篇5:实现SpringBoot后端访问部署在AutoDL上的大模型
并转发到本地的6006端口,这样向地址http://127.0.0.1:6006/v1/chat/completions发出post请求便可以与AutoDL上的ming_api_server进行通信。autoDL每个实例都留了端口6006暴露在外以提供服务,这就给了我们通过这个端口访问部署在AutoDL上的MING的可能性。中提供了一个ssh端口转发的工具,利用该工具我们便可以将远程服务的端口转发到本地上,并访问本地端口来访问autodl上的接口。不过想要访问该接口,需要以SSH隧道方式进行访问。
2024-06-24 02:32:07 366
原创 项目实训——大模型篇2:实现RESTful API访问
ming_api_server参照openAI的RESTful API和fastchat,实现了提供springboot后端访问的对话生成接口。其通过与model_worker通信来获取和解析模型生成的文本内容,并能够接收和返回json格式化信息。
2024-06-24 02:15:02 398
原创 项目实训——大模型篇1:MING模型部署与OpenaiAPI服务的实现1之ModelWorker
MoE架构是一种基于条件计算的模型架构,它将大型模型拆分为多个较小的专家模型,每个专家模型负责处理特定的任务或数据子集。在模型运行时,根据输入数据的特性,选择相应的专家模型进行处理。这种架构可以在保证模型性能的同时,显著提高模型的效率和可扩展性。MING-MOE模型是基于Qwen的Moe模型,这意味着需要Qwen作为对应的模型基座,做一个合并才能正常使用。
2024-06-23 13:21:15 400
原创 项目实训——后端篇4:查询历史记录功能
我们的项目中提供了用户的查询功能,同时保留了用户的查询历史记录。对于我们的项目来说,查询历史记录功能能够追踪用户活动、提高用户体验、确保法律合规、支持数据分析与优化,并在需要时提供数据恢复与备份,从而提升整体系统的功能性和用户满意度。
2024-06-20 18:22:33 392
原创 项目实训——后端篇3:邮箱验证服务的设计与实现
邮箱验证服务的功能集中在EmailClient类,该类实现了邮箱发送功能和邮箱验证码发送功能。整体功能依托Spring框架的JavaMailSenderImpl类实现。
2024-06-20 16:54:43 279
原创 项目实训——后端篇2:登录服务与注册服务
Session(会话)是服务器和客户端之间的一段互动时间,用于记录用户的状态和活动。在HTTP协议中,Session是一种解决无状态性问题的方法。每次HTTP请求都是独立的,但通过Session,可以将多个请求关联起来,形成连续的用户体验。Session的工作原理创建Session:当用户第一次访问服务器时,服务器会创建一个唯一的Session ID,并将其发送给客户端。这个Session ID通常存储在客户端的cookie中。维护Session。
2024-06-20 16:35:36 350
原创 项目实训——后端篇1:使用高德地图WebAPI实现定位服务增强对话质量
在项目实训开始时我便提出了一个设想,即基于用户的所在地址,在对话中增加一些信息,比如,提供附近可就诊的医院等。如今我将尝试实现这个功能步骤如下:1、注册高德地图API Key2、Java后端获取访问用户的IP地址3、根据获取到的IP地址和注册的高德地图API Key,访问高德地图的Web IP定位服务。
2024-05-29 21:55:41 820
原创 项目实训——大模型篇0:在AutoDL平台上部署MING医疗大模型的尝试:模型的上传与环境的安装
最开始想尝试使用ModelScope或者阿里云进行部署,但原模型在Huggingface上,而huggingface上的模型格式与modelscope并不一样,而阿里云的PAI-EAS的GPU服务器的价格也不便宜,一个小时要6RMB,所以一小时2.5RMB左右的autodl就成为了最佳备选。拉取huggingface上的模型的时候,由于文件过大,而且在无卡模式下只有2g内存,有概率面临模型文件拉取到一半被Killed,也就是终止进程。在我们的项目中,关于大模型的部署是很重要的一环。
2024-05-12 22:11:50 795 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人