因数和以及因数个数和问题

首先因数的定义:
  因数是指整数 a 除以整数 b ( b≠0 ) 的商正好是整数而没有余数,我们就说 b 是 a 的因数。

问题一:区间因数和

描述:求解 [L,R] 区间内所有的因数之和,R <= maxx(一般<=1e6)
提前打表,求谁带谁

	//求解[1,maxx]每个数的因数和
	for(int i=1;i<=maxx;i++){
		for(int j=1;j<=maxx/i;j++){
			num[i*j] += i;
		}
	}
	for(int i=2;i<=maxx;i++){
		num[i] += num[i-1];
	}
	cout<<num[r]-num[l-1]<<endl;

那么,对于多次询问且数量级在1e6一下的某个数的因数和的问题,也可以直接这样打表。
AC代码:
例题链接:Query Theory I

#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn = 1000010;
const int maxx = 1000000;
ll num[maxn];
int main(void)
{
    for(int i=1;i<=maxx;i++){
        for(int j=1;j<=maxx/i;j++){
            num[i*j] += i;
        }
    }
    for(int i=2;i<=maxx;i++){
        num[i] += num[i-1];
    }
    int q;
    scanf("%d",&q);
    while(q--){
        int l,r;
        scanf("%d%d",&l,&r);
        printf("%lld\n",num[r]-num[l-1]);
    }
    return 0;
}

问题二:区间因数个数

描述:求解 [1,x] 区间内因数的个数,x <= maxx(一般 1e9 左右)
套用公式,求谁带谁
[1,x] 的 因数个数公式:
a n s = 2 ∗ ∑ i = 1 s q ( x / i ) − s q ∗ s q ans = 2*\sum_{i=1}^{sq}(x/i) -sq*sq ans=2i=1sq(x/i)sqsq
s q = x sq = \sqrt{x} sq=x
例题链接:因数个数和
AC代码:

#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn = 1000010;
int main(void)
{
    int n,x;
    scanf("%d",&n);
    while(n--){
        scanf("%d",&x);
        int sq = sqrt(x);
        ll ans = 0;
        for(int i=1;i<=sq;i++){
            ans += (x/i);
        }
        ans = 2*ans-sq*sq;
        printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逃夭丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值