首先因数的定义:
因数是指整数 a 除以整数 b ( b≠0 ) 的商正好是整数而没有余数,我们就说 b 是 a 的因数。
问题一:区间因数和
描述:求解 [L,R] 区间内所有的因数之和,R <= maxx(一般<=1e6)
提前打表,求谁带谁
//求解[1,maxx]每个数的因数和
for(int i=1;i<=maxx;i++){
for(int j=1;j<=maxx/i;j++){
num[i*j] += i;
}
}
for(int i=2;i<=maxx;i++){
num[i] += num[i-1];
}
cout<<num[r]-num[l-1]<<endl;
那么,对于多次询问且数量级在1e6一下的某个数的因数和的问题,也可以直接这样打表。
AC代码:
例题链接:Query Theory I
#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn = 1000010;
const int maxx = 1000000;
ll num[maxn];
int main(void)
{
for(int i=1;i<=maxx;i++){
for(int j=1;j<=maxx/i;j++){
num[i*j] += i;
}
}
for(int i=2;i<=maxx;i++){
num[i] += num[i-1];
}
int q;
scanf("%d",&q);
while(q--){
int l,r;
scanf("%d%d",&l,&r);
printf("%lld\n",num[r]-num[l-1]);
}
return 0;
}
问题二:区间因数个数
描述:求解 [1,x] 区间内因数的个数,x <= maxx(一般 1e9 左右)
套用公式,求谁带谁
[1,x] 的 因数个数公式:
a
n
s
=
2
∗
∑
i
=
1
s
q
(
x
/
i
)
−
s
q
∗
s
q
ans = 2*\sum_{i=1}^{sq}(x/i) -sq*sq
ans=2∗i=1∑sq(x/i)−sq∗sq
s
q
=
x
sq = \sqrt{x}
sq=x
例题链接:因数个数和
AC代码:
#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn = 1000010;
int main(void)
{
int n,x;
scanf("%d",&n);
while(n--){
scanf("%d",&x);
int sq = sqrt(x);
ll ans = 0;
for(int i=1;i<=sq;i++){
ans += (x/i);
}
ans = 2*ans-sq*sq;
printf("%lld\n",ans);
}
return 0;
}