【线性回归&朴素贝叶斯&kmeans&PCA&决策树】

线性回归模型实现

import numpy as np
from sklearn import datasets
boston = datasets.load_boston()
X = boston.data
y = boston.target
def mse_score(y_predict,y_test):
    '''
    input:y_predict(ndarray):预测值
          y_test(ndarray):真实值
    ouput:mse(float):mse损失函数值
    '''
    #********* Begin *********#
    mse=np.mean((y_predict-y_test)**2)
    #********* End *********#
    return mse
class LinearRegression :
    def __init__(self):
        '''初始化线性回归模型'''
        self.theta = None
        
    def fit_normal(self,train_data,train_label):
        '''
        input:train_data(ndarray):训练样本
              train_label(ndarray):训练标签
        '''
        #********* Begin *********#
        ones=np.ones((train_data.shape[0],1))
        X=np.hstack((ones,train_data))
        XT=X.T
        XTX=np.dot(XT,X)
        XTX_1=np.linalg.inv(XTX)
        XTX_1XT=np.dot(XTX_1,XT)
        self.theta=np.dot(XTX_1XT,train_label)
        #********* End *********#
        return self.theta
    def predict(self,test_data):
        '''
        input:test_data(ndarray):测试样本
        '''
        #********* Begin *********#
        ones=np.ones((test_data.shape[0],1))
        X=np.hstack((ones,test_data))
        y_predict=np.dot(X,self.theta)
        return y_predict
        #********* End *********#

朴素贝叶斯模型实现

import numpy as np
class NaiveBayesClassifier(object):
    def __init__(self):
        '''
        self.label_prob表示每种类别在数据中出现的概率
        例如,{0:0.333, 1:0.667}表示数据中类别0出现的概率为0.333,类别1的概率为0.667
        '''
        self.label_prob = {}
        '''
        self.condition_prob表示每种类别确定的条件下各个特征出现的概率
        例如训练数据集中的特征为 [[2, 1, 1],
                              [1, 2, 2],
                              [2, 2, 2],
                              [2, 1, 2],
                              [1, 2, 3]]
        标签为[1, 0, 1, 0, 1]
        那么当标签为0时第0列的值为1的概率为0.5,值为2的概率为0.5;
        当标签为0时第1列的值为1的概率为0.5,值为2的概率为0.5;
        当标签为0时第2列的值为1的概率为0,值为2的概率为1,值为3的概率为0;
        当标签为1时第0列的值为1的概率为0.333,值为2的概率为0.666;
        当标签为1时第1列的值为1的概率为0.333,值为2的概率为0.666;
        当标签为1时第2列的值为1的概率为0.333,值为2的概率为0.333,值为3的概率为0.333;
        因此self.label_prob的值如下:     
        {
            0:{
                0:{
                    1:0.5
                    2:0.5
                }
                1:{
                    1:0.5
                    2:0.5
                }
                2:{
                    1:0
                    2:1
                    3:0
                }
            }
            1:
            {
                0:{
                    1:0.333
                    2:0.666
                }
                1:{
                    1:0.333
                    2:0.666
                }
                2:{
                    1:0.333
                    2:0.333
                    3:0.333
                }
            }
        }
        '''
        self.condition_prob = {}
    def fit(self, feature, label):
        '''
        对模型进行训练,需要将各种概率分别保存在self.label_prob和self.condition_prob中
        :param feature: 训练数据集所有特征组成的ndarray
        :param label:训练数据集中所有标签组成的ndarray
        :return: 无返回
        '''
        #********* Begin *********#
        row_num = len(feature)
        col_num = len(feature[0])
        unique_label_count = len(set(label))
        for c in label:
            if c in self.label_prob:
                self.label_prob[c] += 1
            else:
                self.label_prob[c] = 1
        for key in self.label_prob.keys():
            # 计算每种类别在数据集中出现的概率,拉普拉斯平滑
            self.label_prob[key] += 1
            self.label_prob[key] /= (unique_label_count+row_num)
            # 构建self.condition_prob中的key
            self.condition_prob[key] = {}
            for i in range(col_num):
                self.condition_prob[key][i] = {}
                for k in np.unique(feature[:, i], axis=0):
                    self.condition_prob[key][i][k] = 1
        for i in range(len(feature)):
            for j in range(len(feature[i])):
                if feature[i][j] in self.condition_prob[label[i]]:
                    self.condition_prob[label[i]][j][feature[i][j]] += 1
        for label_key in self.condition_prob.keys():
            for k in self.condition_prob[label_key].keys():
                #拉普拉斯平滑
                total = len(self.condition_prob[label_key].keys())
                for v in self.condition_prob[label_key][k].values():
                    total += v
                for kk in self.condition_prob[label_key][k].keys():
                    # 计算每种类别确定的条件下各个特征出现的概率
                    self.condition_prob[label_key][k][kk] /= total
        #********* End *********#


    def predict(self, feature):
        '''
        对数据进行预测,返回预测结果
        :param feature:测试数据集所有特征组成的ndarray
        :return:
        '''
        # ********* Begin *********#
        result = []
        # 对每条测试数据都进行预测
        for i, f in enumerate(feature):
            # 可能的类别的概率
            prob = np.zeros(len(self.label_prob.keys()))
            ii = 0
            for label, label_prob in self.label_prob.items():
                # 计算概率
                prob[ii] = label_prob
                for j in range(len(feature[0])):
                    prob[ii] *= self.condition_prob[label][j][f[j]]
                ii += 1
            # 取概率最大的类别作为结果
            result.append(list(self.label_prob.keys())[np.argmax(prob)])
        return np.array(result)
        #********* End *********#

kmeans实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

X = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]])
k = 2
kmeans = KMeans(n_clusters=k)
y_pred = kmeans.fit_predict(X)

plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title('KMeans Clustering')
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()

PCA实现

import numpy as np
from sklearn.decomposition import PCA

X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

print(X_pca)

'''
result
[[-1.34690654e+00  1.11022302e-16]
 [ 0.00000000e+00  0.00000000e+00]
 [ 1.34690654e+00 -1.11022302e-16]]
 '''

决策树实现

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

print("训练集得分:", clf.score(X_train, y_train))
print("测试集得分:", clf.score(X_test, y_test))
'''
训练集得分: 1.0
测试集得分: 0.9555555555555556

'''
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值