动态规划是什么
动态规划(Dynamic Programming)是一种解决多阶段决策过程最优化问题的算法思想。它可以将一个大问题分解成多个小问题,通过求解子问题的最优解来推导出整个问题的最优解。在解决问题时,动态规划算法会将问题分解成一系列子问题,并在求解子问题的基础上逐步求解原问题。
动态规划算法通常具有以下几个步骤:
1.定义状态:将原问题分解成若干个子问题,定义状态表示每个子问题的解,通常情况下,状态定义是问题解决的关键。
2.确定状态转移方程:根据子问题之间的关系,定义状态之间的转移方程,即如何通过子问题的解推导出原问题的解。
3.确定边界条件:即初始状态下子问题的解。
4.计算最优解:使用已经确定的状态转移方程计算出最终问题的最优解。
动态规划算法的时间复杂度通常为 O(n^2) 或 O(n^3),在某些特殊情况下也可以做到 O(nlogn) 或 O(n) 的复杂度。
动态规划算法在许多领域中都有广泛的应用,例如图像处理、自然语言处理、网络优化等。在算法竞赛中,动态规划算法也是一种常用的算法思想。
对于检查一个字符串是否出现在给定的字符串列表里一般可以考虑哈希表来快速判断
还要注意边界条件 dp[0]的定义
多了一个dp[0]的状态,所以一般数组大小都是size() + 1
面试写代码的时候写一些注释
class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
//动态规划
//哈希表
unordered_set<string> wordDictSet;
for (auto str : wordDict) {
wordDictSet.insert(str);
}
//状态定义
vector<bool> dp(s.size() + 1);
//初始化
dp[0] = true;
//状态转移
for (int i = 1; i <= s.size(); ++i) {
for (int j = 0; j < i; ++j) {
if (dp[j] && wordDictSet.find(s.substr(j, i - j)) != wordDictSet.end()) {
dp[i] = true;
break;
}
}
}
return dp[s.size()];
}
};