【项目】数仓项目(十)

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

(图片来源于网络,侵删)


一、数仓搭建 - ADS 层

1.1 设备主题

1.1.1 活跃设备数(日、周、月)

需求定义:

日活:当日活跃的设备数

周活:当周活跃的设备数

月活:当月活跃的设备数

1)建表语句

drop table if exists ads_uv_count;
create external table ads_uv_count(
`dt` string COMMENT '统计日期',
`day_count` bigint COMMENT '当日用户数量',
`wk_count` bigint COMMENT '当周用户数量',
`mn_count` bigint COMMENT '当月用户数量',
`is_weekend` string COMMENT 'Y,N 是否是周末,用于得到本周最终结果',
`is_monthend` string COMMENT 'Y,N 是否是月末,用于得到本月最终结果'
) COMMENT '活跃设备数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_uv_count/';

2)导入数据

insert into table ads_uv_count
select
'2020-03-10' dt,
daycount.ct,
wkcount.ct,
mncount.ct,
if(date_add(next_day('2020-03-10','MO'),-1)='2020-03-10','Y','N') ,
if(last_day('2020-03-10')='2020-03-10','Y','N')
from
(
select
'2020-03-10' dt,
count(*) ct
from dwt_uv_topic
where login_date_last='2020-03-10'
)daycount join
(
select
'2020-03-10' dt,
count (*) ct
from dwt_uv_topic
where login_date_last>=date_add(next_day('2020-03-10','MO'),-7)
and login_date_last<= date_add(next_day('2020-03-10','MO'),-1)
) wkcount on daycount.dt=wkcount.dt
join
(
select
'2020-03-10' dt,
count (*) ct
from dwt_uv_topic
where
date_format(login_date_last,'yyyy-MM')=date_format('2020-03-10','yyyy-MM')
)mncount on daycount.dt=mncount.dt;

3)查询导入结果

select * from ads_uv_count;
1.1.2 每日新增设备

1)建表语句

drop table if exists ads_new_mid_count;
create external table ads_new_mid_count
(
`create_date` string comment '创建时间' ,
`new_mid_count` BIGINT comment '新增设备数量'
) COMMENT '每日新增设备信息数量'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_new_mid_count/';

2)导入数据

insert into table ads_new_mid_count
select
login_date_first,
count(*)
from dwt_uv_topic
where login_date_first='2020-03-10'
group by login_date_first;

3)查询导入数据

select * from ads_new_mid_count;
1.1.3 沉默用户数

需求定义:

沉默用户:只在安装当天启动过,且启动时间是在 7 天前

1)建表语句

drop table if exists ads_silent_count;
create external table ads_silent_count(
`dt` string COMMENT '统计日期',
`silent_count` bigint COMMENT '沉默设备数'
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_silent_count';

2)导入 2020-03-20 数据

insert into table ads_silent_count
select
'2020-03-15',
count(*)
from dwt_uv_topic
where login_date_first=login_date_last
and login_date_last<=date_add('2020-03-15',-7);

3)查询导入数据

select * from ads_silent_count;
1.1.4 本周回流用户数

需求定义:

本周回流用户:上周未活跃,本周活跃的设备,且不是本周新增设备

1)建表语句

drop table if exists ads_back_count;
create external table ads_back_count(
`dt` string COMMENT '统计日期',
`wk_dt` string COMMENT '统计日期所在周',
`wastage_count` bigint COMMENT '回流设备数'
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_back_count';

2)导入数据:

insert into table ads_back_count
select
'2020-03-15',
count(*)
from
(
select
mid_id
from dwt_uv_topic
where login_date_last>=date_add(next_day('2020-03-15','MO'),-7)
and login_date_last<= date_add(next_day('2020-03-15','MO'),-1)
and login_date_first<date_add(next_day('2020-03-15','MO'),-7)
)current_wk
left join
(
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('2020-03-15','MO'),-7*2)
and dt<= date_add(next_day('2020-03-15','MO'),-7-1)
group by mid_id
)last_wk
on current_wk.mid_id=last_wk.mid_id
where last_wk.mid_id is null;

3)查询结果

select * from ads_back_count;
1.1.5 流失用户数

需求定义:

流失用户:最近 7 天未活跃的设备

1)建表语句

drop table if exists ads_wastage_count;
create external table ads_wastage_count(
`dt` string COMMENT '统计日期',
`wastage_count` bigint COMMENT '流失设备数'
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_wastage_count';

2)导入 2020-03-20 数据

insert into table ads_wastage_count
select
'2020-03-20',
count(*)
from
(
select
mid_id
from dwt_uv_topic
where login_date_last<=date_add('2020-03-20',-7)
group by mid_id
)t1;

3)查询结果

select * from ads_wastage_count;
1.1.6 留存率

在这里插入图片描述
1)建表语句

drop table if exists ads_user_retention_day_rate;
create external table ads_user_retention_day_rate
(
`stat_date` string comment '统计日期',
`create_date` string comment '设备新增日期',
`retention_day` int comment '截止当前日期留存天数',
`retention_count` bigint comment '留存数量',
`new_mid_count` bigint comment '设备新增数量',
`retention_ratio` decimal(10,2) comment '留存率'
) COMMENT '每日用户留存情况'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_retention_day_rate/';

2)导入数据

insert into table ads_user_retention_day_rate
select
'2020-03-10',--统计日期
date_add('2020-03-10',-1),--新增日期
1,--留存天数
sum(if(login_date_first=date_add('2020-03-10',-1) and
login_date_last='2020-03-10',1,0)),--2020-03-09 的 1 日留存数
sum(if(login_date_first=date_add('2020-03-10',-1),1,0)),--2020-03-09 新增
sum(if(login_date_first=date_add('2020-03-10',-1) and
login_date_last='2020-03-10',1,0))/sum(if(login_date_first=date_add('2020-03-10',-
1),1,0))*100
from dwt_uv_topic
union all
select
'2020-03-10',--统计日期
date_add('2020-03-10',-2),--新增日期
2,--留存天数
sum(if(login_date_first=date_add('2020-03-10',-2) and
login_date_last='2020-03-10',1,0)),--2020-03-08 的 2 日留存数
sum(if(login_date_first=date_add('2020-03-10',-2),1,0)),--2020-03-08 新增
sum(if(login_date_first=date_add('2020-03-10',-2) and
login_date_last='2020-03-10',1,0))/sum(if(login_date_first=date_add('2020-03-10',-
2),1,0))*100
from dwt_uv_topic
union all
select
'2020-03-10',--统计日期
date_add('2020-03-10',-3),--新增日期
3,--留存天数
sum(if(login_date_first=date_add('2020-03-10',-3) and
login_date_last='2020-03-10',1,0)),--2020-03-07 的 3 日留存数
sum(if(login_date_first=date_add('2020-03-10',-3),1,0)),--2020-03-07 新增
sum(if(login_date_first=date_add('2020-03-10',-3) and
login_date_last='2020-03-10',1,0))/sum(if(login_date_first=date_add('2020-03-10',-
3),1,0))*100
from dwt_uv_topic;

3)查询导入数据

select * from ads_user_retention_day_rate;
1.1.7 最近连续三周活跃用户数

1)建表语句

drop table if exists ads_continuity_wk_count;
create external table ads_continuity_wk_count(
`dt` string COMMENT '统计日期,一般用结束周周日日期,如果每天计算一次,可用当天日
期',
`wk_dt` string COMMENT '持续时间',
`continuity_count` bigint COMMENT '活跃次数'
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_wk_count';

2)导入 2020-03-20 所在周的数据

insert into table ads_continuity_wk_count
select
'2020-03-15',
concat(date_add(next_day('2020-03-15','MO'),-7*3),'_',date_add(next_day('
2020-03-15','MO'),-1)),
count(*)
from
(
select
mid_id
from
(
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('2020-03-10','monday'),-7)
and dt<=date_add(next_day('2020-03-10','monday'),-1)
group by mid_id
union all
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('2020-03-10','monday'),-7*2)
and dt<=date_add(next_day('2020-03-10','monday'),-7-1)
group by mid_id
union all
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('2020-03-10','monday'),-7*3)
and dt<=date_add(next_day('2020-03-10','monday'),-7*2-1)
group by mid_id
)t1
group by mid_id
having count(*)=3
)t2

3)查询

select * from ads_continuity_wk_count;
1.1.8 最近七天内连续三天活跃用户数

1)建表语句

drop table if exists ads_continuity_uv_count;
create external table ads_continuity_uv_count(
`dt` string COMMENT '统计日期',
`wk_dt` string COMMENT '最近 7 天日期',
`continuity_count` bigint
) COMMENT '连续活跃设备数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_uv_count';

2)写出导入数据的 SQL 语句

insert into table ads_continuity_uv_count
select
'2020-03-12',
concat(date_add('2020-03-12',-6),'_','2020-03-12'),
count(*)
from
(
select mid_id
from
(
select mid_id
from
(
select
mid_id,
date_sub(dt,rank) date_dif
from
(
select
mid_id,
dt,
rank() over(partition by mid_id order by dt) rank
from dws_uv_detail_daycount
where dt>=date_add('2020-03-12',-6) and
dt<='2020-03-12'
)t1
)t2
group by mid_id,date_dif
having count(*)>=3
)t3
group by mid_id
)t4;

3)查询

select * from ads_continuity_uv_count;

7.2 会员主题

7.2.1 会员主题信息

1)建表

drop table if exists ads_user_topic;
create external table ads_user_topic(
`dt` string COMMENT '统计日期',
`day_users` string COMMENT '活跃会员数',
`day_new_users` string COMMENT '新增会员数',
`day_new_payment_users` string COMMENT '新增消费会员数',
`payment_users` string COMMENT '总付费会员数',
`users` string COMMENT '总会员数',
`day_users2users` decimal(10,2) COMMENT '会员活跃率',
`payment_users2users` decimal(10,2) COMMENT '会员付费率',
`day_new_users2users` decimal(10,2) COMMENT '会员新鲜度'
) COMMENT '会员主题信息表'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_topic';

2)导入数据

insert into table ads_user_topic
select
'2020-03-10',
sum(if(login_date_last='2020-03-10',1,0)),
sum(if(login_date_first='2020-03-10',1,0)),
sum(if(payment_date_first='2020-03-10',1,0)),
sum(if(payment_count>0,1,0)),
count(*),
sum(if(login_date_last='2020-03-10',1,0))/count(*),
sum(if(payment_count>0,1,0))/count(*),
sum(if(login_date_first='2020-03-10',1,0))/sum(if(login_date_last='2020-03-10',1,0))
from dwt_user_topic

3)查询数据
hive (gmall)> select * from ads_user_topic;

4)vim ads_user_topic.sh
添加如下内容:

#!/bin/bash
APP=gmall
hive=/opt/modules/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
with
tmp_day_users as
(
select
'$do_date' dt,
count(*) day_users
from
${APP}.dwt_user_topic
where
login_date_last='$do_date'
),
tmp_day_new_users as
(
select
'$do_date' dt,
count(*) day_new_users
from
${APP}.dwt_user_topic
where
login_date_last='$do_date' and login_date_first='$do_date'
),
tmp_day_new_payment_users as
(
select
'$do_date' dt,
count(*) day_new_payment_users
from
${APP}.dwt_user_topic
where
payment_date_first='$do_date'
),
tmp_payment_users as
(
select
'$do_date' dt,
count(*) payment_users
from
${APP}.dwt_user_topic
where
payment_date_first is not null
),
tmp_users as
(
select
'$do_date' dt,
count(*) users
from
${APP}.dwt_user_topic
tmp_users
)
insert into table ${APP}.ads_user_topic
select
'$do_date' dt,
day_users,
day_new_users,
day_new_payment_users,
payment_users,
users,
day_users/users,
payment_users/users,
day_new_users/users
from
tmp_day_users
join
tmp_day_new_users
on
tmp_day_users.dt=tmp_day_new_users.dt
join
tmp_day_new_payment_users
on
tmp_day_users.dt=tmp_day_new_payment_users.dt
join
tmp_payment_users
on
tmp_day_users.dt=tmp_payment_users.dt
join
tmp_users
on
tmp_day_users.dt=tmp_users.dt;
"
$hive -e "$sql"

5)增加脚本执行权限

chmod 770 ads_user_topic.sh

6)执行脚本导入数据

ads_user_topic.sh 2020-03-11

7)查看导入数据

select * from ads_user_topic;
7.2.2 漏斗分析

统计“浏览->购物车->下单->支付”的转化率

思路:统计各个行为的人数,然后计算比值

1)建表语句

drop table if exists ads_user_action_convert_day;
create external table ads_user_action_convert_day(
`dt` string COMMENT '统计日期',
`total_visitor_m_count` bigint COMMENT '总访问人数',
`cart_u_count` bigint COMMENT '加入购物车的人数',
`visitor2cart_convert_ratio` decimal(10,2) COMMENT '访问到加入购物车转化率',
`order_u_count` bigint COMMENT '下单人数',
`cart2order_convert_ratio` decimal(10,2) COMMENT '加入购物车到下单转化率',
`payment_u_count` bigint COMMENT '支付人数',
`order2payment_convert_ratio` decimal(10,2) COMMENT '下单到支付的转化率'
) COMMENT '用户行为漏斗分析'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_action_convert_day/';

2)数据装载

insert into table ads_user_action_convert_day
select
'2020-03-10',
uv.day_count,
ua.cart_count,
cast(ua.cart_count/uv.day_count as decimal(10,2)) visitor2cart_convert_ratio,
ua.order_count,
cast(ua.order_count/ua.cart_count as decimal(10,2)) visitor2order_convert_ratio,
ua.payment_count,
cast(ua.payment_count/ua.order_count as decimal(10,2)) order2payment_convert_ratio
from
(
select
dt,
sum(if(cart_count>0,1,0)) cart_count,
sum(if(order_count>0,1,0)) order_count,
sum(if(payment_count>0,1,0)) payment_count
from dws_user_action_daycount
where dt='2020-03-10'
group by dt
)ua join ads_uv_count uv on uv.dt=ua.dt; 

3)查询加载数据

select * from ads_user_action_convert_day;

7.3 商品主题

7.3.1 商品个数信息

1)建表语句

drop table if exists ads_product_info;
create external table ads_product_info(
`dt` string COMMENT '统计日期',
`sku_num` string COMMENT 'sku 个数',
`spu_num` string COMMENT 'spu 个数'
) COMMENT '商品个数信息'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_info';

2)导入数据

insert into table ads_product_info
select
'2020-03-10' dt,
sku_num,
spu_num
from
(
select
'2020-03-10' dt,
count(*) sku_num
from
dwt_sku_topic
) tmp_sku_num
join
(
select
'2020-03-10' dt,
count(*) spu_num
from
(
select
spu_id
from
dwt_sku_topic
group by
spu_id
) tmp_spu_id
) tmp_spu_num
on
tmp_sku_num.dt=tmp_spu_num.dt;

3)查询结果数据

select * from ads_product_info;
7.3.2 商品销量排名

1)建表语句

drop table if exists ads_product_sale_topN;
create external table ads_product_sale_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`payment_amount` bigint COMMENT '销量'
) COMMENT '商品个数信息'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_sale_topN';

2)导入数据

insert into table ads_product_sale_topN
select
'2020-03-10' dt,
sku_id,
payment_amount
from
dws_sku_action_daycount
where
dt='2020-03-10'
order by payment_amount desc
limit 10;

3)查询结果数据

select * from ads_product_sale_topN;
7.3.3 商品收藏排名

1)建表语句

drop table if exists ads_product_favor_topN;
create external table ads_product_favor_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`favor_count` bigint COMMENT '收藏量'
) COMMENT '商品收藏 TopN'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_favor_topN';

2)导入数据

insert into table ads_product_favor_topN
select
'2020-03-10' dt,
sku_id,
favor_count
from
dws_sku_action_daycount
where
dt='2020-03-10'
order by favor_count desc
limit 10;

3)查询数据

select * from ads_product_favor_topN;
7.3.4 商品加入购物车排名

1)建表语句

drop table if exists ads_product_cart_topN;
create external table ads_product_cart_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`cart_num` bigint COMMENT '加入购物车数量'
) COMMENT '商品加入购物车 TopN'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_cart_topN';

2)导入数据

insert into table ads_product_cart_topN
select
'2020-03-10' dt,
sku_id,
cart_num
from
dws_sku_action_daycount
where
dt='2020-03-10'
order by cart_num desc
limit 10;

3)查询数据

select * from ads_product_cart_topN;
7.3.5 商品退款率排名(最近 30 天)

1)建表语句

drop table if exists ads_product_refund_topN;
create external table ads_product_refund_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`refund_ratio` decimal(10,2) COMMENT '退款率'
) COMMENT '商品退款率 TopN'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_refund_topN';

2)导入数据

insert into table ads_product_refund_topN
select
'2020-03-10',
sku_id,
refund_last_30d_count/payment_last_30d_count*100 refund_ratio
from dwt_sku_topic
order by refund_ratio desc
limit 10;

3)查询数据

select * from ads_product_refund_topN;
7.3.6 商品差评率

1)建表语句

drop table if exists ads_appraise_bad_topN;
create external table ads_appraise_bad_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`appraise_bad_ratio` decimal(10,2) COMMENT '差评率'
) COMMENT '商品差评率 TopN'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_appraise_bad_topN';

2)导入数据

insert into table ads_appraise_bad_topN
select
'2020-03-10' dt,
sku_id,
appraise_bad_count/(appraise_good_count+appraise_mid_count+appraise_bad_coun
t+appraise_default_count) appraise_bad_ratio
from
dws_sku_action_daycount
where
dt='2020-03-10'
order by appraise_bad_ratio desc
limit 10;

3)查询数据

select * from ads_appraise_bad_topN;

7.4 营销主题(用户+商品+购买行为)

7.4.1 下单数目统计

需求分析:统计每日下单数,下单金额及下单用户数

1)建表语句

drop table if exists ads_order_daycount;
create external table ads_order_daycount(
dt string comment '统计日期',
order_count bigint comment '单日下单笔数',
order_amount decimal(10,2) comment '单日下单金额',
order_users bigint comment '单日下单用户数'
) comment '每日订单总计表'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_order_daycount';

2)导入数据

insert into table ads_order_daycount
select
'2020-03-10',
sum(order_count),
sum(order_amount),
sum(if(order_count>0,1,0))
from dws_user_action_daycount
where dt='2020-03-10';

3)查询数据

select * from ads_order_daycount;
7.4.2 支付信息统计

每日支付金额、支付人数、支付商品数、支付笔数以及下单到支付的平均时长(取自 DWD)

1)建表

drop table if exists ads_payment_daycount;
create external table ads_payment_daycount(
dt string comment '统计日期',
payment_count bigint comment '单日支付笔数',
payment_amount decimal(10,2) comment '单日支付金额',
payment_user_count bigint comment '单日支付人数',
payment_sku_count bigint comment '单日支付商品数',
payment_avg_time double comment '下单到支付的平均时长,取分钟数'
) comment '每日订单总计表'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_payment_daycount';

2)导入数据

insert into table ads_payment_daycount
select
tmp_payment.dt,
tmp_payment.payment_count,
tmp_payment.payment_amount,
tmp_payment.payment_user_count,
tmp_skucount.payment_sku_count,
tmp_time.payment_avg_time
from
(
select
'2020-03-15' dt,
sum(payment_count) payment_count,
sum(payment_amount) payment_amount,
sum(if(payment_count>0,1,0)) payment_user_count
from dws_user_action_daycount
where dt='2020-03-15'
)tmp_payment
join
(
select
'2020-03-15' dt,
sum(if(payment_count>0,1,0)) payment_sku_count
from dws_sku_action_daycount
where dt='2020-03-15'
)tmp_skucount on tmp_payment.dt=tmp_skucount.dt
join
(
select
'2020-03-15' dt,
sum(unix_timestamp(payment_time)-unix_timestamp(create_time))/count(*)/60
payment_avg_time
from dwd_fact_order_info
where dt='2020-03-15'
and payment_time is not null
)tmp_time on tmp_payment.dt=tmp_time.dt

3)查询数据

select * from ads_payment_daycount;
7.4.3 复购率

1)建表语句

drop table ads_sale_tm_category1_stat_mn;
create external table ads_sale_tm_category1_stat_mn
(
tm_id string comment '品牌 id',
category1_id string comment '1 级品类 id ',
category1_name string comment '1 级品类名称 ',
buycount bigint comment '购买人数',
buy_twice_last bigint comment '两次以上购买人数',
buy_twice_last_ratio decimal(10,2) comment '单次复购率',
buy_3times_last bigint comment '三次以上购买人数',
buy_3times_last_ratio decimal(10,2) comment '多次复购率',
stat_mn string comment '统计月份',
stat_date string comment '统计日期'
) COMMENT '复购率统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_sale_tm_category1_stat_mn/';

2)数据导入

insert into table ads_sale_tm_category1_stat_mn
select
mn.sku_tm_id,
mn.sku_category1_id,
mn.sku_category1_name,
sum(if(mn.order_count>=1,1,0)) buycount,
sum(if(mn.order_count>=2,1,0)) buyTwiceLast,
sum(if(mn.order_count>=2,1,0))/sum( if(mn.order_count>=1,1,0))
buyTwiceLastRatio,
sum(if(mn.order_count>=3,1,0)) buy3timeLast ,
sum(if(mn.order_count>=3,1,0))/sum( if(mn.order_count>=1,1,0))
buy3timeLastRatio ,
date_format('2020-03-10' ,'yyyy-MM') stat_mn,
'2020-03-10' stat_date
from
(
	select
	user_id,
	sd.sku_tm_id,
	sd.sku_category1_id,
	sd.sku_category1_name,
	sum(order_count) order_count
	from dws_sale_detail_daycount sd
	where date_format(dt,'yyyy-MM')=date_format('2020-03-10' ,'yyyy-MM')
	group by user_id, sd.sku_tm_id, sd.sku_category1_id, sd.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name;

7.5 ADS 层导入脚本

1)vim dwt_to_ads.sh
在脚本中填写如下内容

#!/bin/bash
hive=/opt/modules/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="use gmall;
insert into table ads_uv_count
select
'$do_date',
sum(if(login_date_last='$do_date',1,0)),
sum(if(login_date_last>=date_add(next_day('$do_date','monday'),-7) and
login_date_last<=date_add(next_day('$do_date','monday'),-1) ,1,0)),
sum(if(date_format(login_date_last,'yyyy-MM')=date_format('$do_date','yyyy-M
M'),1,0)),
if('$do_date'=date_add(next_day('$do_date','monday'),-1),'Y','N'),
if('$do_date'=last_day('$do_date'),'Y','N')
from dwt_uv_topic;


insert into table ads_new_mid_count
select
'$do_date',
count(*)
from dwt_uv_topic
where login_date_first='$do_date';


insert into table ads_silent_count
select
'$do_date',
count(*)
from dwt_uv_topic
where login_date_first=login_date_last
and login_date_last<=date_add('$do_date',-7);


insert into table ads_back_count
select
'$do_date',
concat(date_add(next_day('2020-03-10','MO'),-7),'_',date_add(next_day('2020-
03-10','MO'),-1)),
count(*)
from
(
select
mid_id
from dwt_uv_topic
where login_date_last>=date_add(next_day('$do_date','MO'),-7)
and login_date_last<= date_add(next_day('$do_date','MO'),-1)
and login_date_first<date_add(next_day('$do_date','MO'),-7)
)current_wk
left join
(
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','MO'),-7*2)
and dt<= date_add(next_day('$do_date','MO'),-7-1)
group by mid_id
)last_wk
on current_wk.mid_id=last_wk.mid_id
where last_wk.mid_id is null;


insert into table ads_wastage_count
select
'$do_date',
count(*)
from dwt_uv_topic
where login_date_last<=date_add('$do_date',-7);


insert into table ads_user_retention_day_rate
select
'$do_date',
date_add('$do_date',-3),
3,
sum(if(login_date_first=date_add('$do_date',-3) and
login_date_last='$do_date',1,0)),
sum(if(login_date_first=date_add('$do_date',-3),1,0)),
sum(if(login_date_first=date_add('$do_date',-3) and
login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',
-3),1,0))*100
from dwt_uv_topic
union all
select
'$do_date',
date_add('$do_date',-2),
2,
sum(if(login_date_first=date_add('$do_date',-2) and
login_date_last='$do_date',1,0)),
sum(if(login_date_first=date_add('$do_date',-2),1,0)),
sum(if(login_date_first=date_add('$do_date',-2) and
login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',
-2),1,0))*100
from dwt_uv_topic
union all
select
'$do_date',
date_add('$do_date',-1),
1,
sum(if(login_date_first=date_add('$do_date',-1) and
login_date_last='$do_date',1,0)),
sum(if(login_date_first=date_add('$do_date',-1),1,0)),
sum(if(login_date_first=date_add('$do_date',-1) and
login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',
-1),1,0))*100
from dwt_uv_topic;


insert into table ads_continuity_wk_count
select
'$do_date',
concat(date_add(next_day('$do_date','MO'),-7*3),'_',date_add(next_day('$do_d
ate','MO'),-1)),
count(*)
from
(
select
mid_id
from
(
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','monday'),-7)
and dt<=date_add(next_day('$do_date','monday'),-1)
group by mid_id
union all
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','monday'),-7*2)
and dt<=date_add(next_day('$do_date','monday'),-7-1)
group by mid_id
union all
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','monday'),-7*3)
and dt<=date_add(next_day('$do_date','monday'),-7*2-1)
group by mid_id
)t1
group by mid_id
having count(*)=3
)t2;


insert into table ads_continuity_uv_count
select
'$do_date',
concat(date_add('$do_date',-6),'_','$do_date'),
count(*)
from
(
select mid_id
from
(
select mid_id
from
(
select
mid_id,
date_sub(dt,rank) date_dif
from
(
select
mid_id,
dt,
rank() over(partition by mid_id order by dt) rank
from dws_uv_detail_daycount
where dt>=date_add('$do_date',-6) and dt<='$do_date'
)t1
)t2
group by mid_id,date_dif
having count(*)>=3
)t3
group by mid_id
)t4;


insert into table ads_user_topic
select
'$do_date',
sum(if(login_date_last='$do_date',1,0)),
sum(if(login_date_first='$do_date',1,0)),
sum(if(payment_date_first='$do_date',1,0)),
sum(if(payment_count>0,1,0)),
count(*),
sum(if(login_date_last='$do_date',1,0))/count(*),
sum(if(payment_count>0,1,0))/count(*),
sum(if(login_date_first='$do_date',1,0))/sum(if(login_date_last='$do_date',1,
0))
from dwt_user_topic;


insert into table ads_user_action_convert_day
select
'$do_date',
uv.day_count,
ua.cart_count,
ua.cart_count/uv.day_count*100 visitor2cart_convert_ratio,
ua.order_count,
ua.order_count/ua.cart_count*100 visitor2order_convert_ratio,
ua.payment_count,
ua.payment_count/ua.order_count*100 order2payment_convert_ratio
from
(
select
'$do_date' dt,
sum(if(cart_count>0,1,0)) cart_count,
sum(if(order_count>0,1,0)) order_count,
sum(if(payment_count>0,1,0)) payment_count
from dws_user_action_daycount
where dt='$do_date'
)ua join ads_uv_count uv on uv.dt=ua.dt;


insert into table ads_product_info
select
'$do_date' dt,
sku_num,
spu_num
from
(
select
'$do_date' dt,
count(*) sku_num
from
dwt_sku_topic
) tmp_sku_num
join
(
select
'$do_date' dt,
count(*) spu_num
from
(
select
spu_id
from
dwt_sku_topic
group by
spu_id
) tmp_spu_id
) tmp_spu_num
on tmp_sku_num.dt=tmp_spu_num.dt;


insert into table ads_product_sale_topN
select
'$do_date',
sku_id,
payment_amount
from dws_sku_action_daycount
where dt='$do_date'
order by payment_amount desc
limit 10;


insert into table ads_product_favor_topN
select
'$do_date',
sku_id,
favor_count
from dws_sku_action_daycount
where dt='$do_date'
order by favor_count
limit 10;


insert into table ads_product_cart_topN
select
'$do_date' dt,
sku_id,
cart_num
from dws_sku_action_daycount
where dt='$do_date'
order by cart_num
limit 10;


insert into table ads_product_refund_topN
select
'$do_date',
sku_id,
refund_last_30d_count/payment_last_30d_count*100 refund_ratio
from dwt_sku_topic
order by refund_ratio desc
limit 10;


insert into table ads_appraise_bad_topN
select
'$do_date' dt,
sku_id,
appraise_bad_count/(appraise_bad_count+appraise_good_count+appraise_mid_coun
t+appraise_default_count)*100 appraise_bad_ratio
from dws_sku_action_daycount
where dt='$do_date'
order by appraise_bad_ratio desc
limit 10;


insert into table ads_order_daycount
select
'$do_date',
sum(order_count),
sum(order_amount),
sum(if(order_count>0,1,0))
from dws_user_action_daycount
where dt='$do_date';


insert into table ads_payment_daycount
select
tmp_payment.dt,
tmp_payment.payment_count,
tmp_payment.payment_amount,
tmp_payment.payment_user_count,
tmp_skucount.payment_sku_count,
tmp_time.payment_avg_time
from
(
select
'$do_date' dt,
sum(payment_count) payment_count,
sum(payment_amount) payment_amount,
sum(if(payment_count>0,1,0)) payment_user_count
from dws_user_action_daycount
where dt='$do_date'
)tmp_payment
join
(
select
'$do_date' dt,
sum(if(payment_count>0,1,0)) payment_sku_count
from dws_sku_action_daycount
where dt='$do_date'
)tmp_skucount on tmp_payment.dt=tmp_skucount.dt
join
(
select
'$do_date' dt,
sum(unix_timestamp(payment_time)-unix_timestamp(create_time))/count(*)/60
payment_avg_time
from dwd_fact_order_info
where dt='$do_date'
and payment_time is not null
)tmp_time on tmp_payment.dt=tmp_time.dt;


insert into table ads_sale_tm_category1_stat_mn
select
mn.sku_tm_id,
mn.sku_category1_id,
mn.sku_category1_name,
sum(if(mn.order_count>=1,1,0)) buycount,
sum(if(mn.order_count>=2,1,0)) buyTwiceLast,
sum(if(mn.order_count>=2,1,0))/sum( if(mn.order_count>=1,1,0))
buyTwiceLastRatio,
sum(if(mn.order_count>=3,1,0)) buy3timeLast ,
sum(if(mn.order_count>=3,1,0))/sum( if(mn.order_count>=1,1,0))
buy3timeLastRatio ,
date_format('$do_date' ,'yyyy-MM') stat_mn,
'$do_date' stat_date
from
(
select
user_id,
sd.sku_tm_id,
sd.sku_category1_id,
sd.sku_category1_name,
sum(order_count) order_count
from dws_sale_detail_daycount sd
where date_format(dt,'yyyy-MM')=date_format('$do_date' ,'yyyy-MM')
group by user_id, sd.sku_tm_id, sd.sku_category1_id, sd.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name;
"
$hive -e "$sql"

2)增加脚本执行权限

chmod 770 dwt_to_ads.sh

3)执行脚本导入数据

dwt_to_ads.sh  2020-03-10

4)查看导入数据


结束语

终于ADS层已经搭建完毕,至此,Hive的分层搭建已经完成,以及指标分析也已经完成,所以我们下章见!


都看到这里了,点赞评论一下吧!!!

在这里插入图片描述

点击查看👇

敬请期待!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值