(图片来源于网络,侵删)
一、数仓搭建 - ADS 层
1.1 设备主题
1.1.1 活跃设备数(日、周、月)
需求定义:
日活:当日活跃的设备数
周活:当周活跃的设备数
月活:当月活跃的设备数
1)建表语句
drop table if exists ads_uv_count;
create external table ads_uv_count(
`dt` string COMMENT '统计日期',
`day_count` bigint COMMENT '当日用户数量',
`wk_count` bigint COMMENT '当周用户数量',
`mn_count` bigint COMMENT '当月用户数量',
`is_weekend` string COMMENT 'Y,N 是否是周末,用于得到本周最终结果',
`is_monthend` string COMMENT 'Y,N 是否是月末,用于得到本月最终结果'
) COMMENT '活跃设备数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_uv_count/';
2)导入数据
insert into table ads_uv_count
select
'2020-03-10' dt,
daycount.ct,
wkcount.ct,
mncount.ct,
if(date_add(next_day('2020-03-10','MO'),-1)='2020-03-10','Y','N') ,
if(last_day('2020-03-10')='2020-03-10','Y','N')
from
(
select
'2020-03-10' dt,
count(*) ct
from dwt_uv_topic
where login_date_last='2020-03-10'
)daycount join
(
select
'2020-03-10' dt,
count (*) ct
from dwt_uv_topic
where login_date_last>=date_add(next_day('2020-03-10','MO'),-7)
and login_date_last<= date_add(next_day('2020-03-10','MO'),-1)
) wkcount on daycount.dt=wkcount.dt
join
(
select
'2020-03-10' dt,
count (*) ct
from dwt_uv_topic
where
date_format(login_date_last,'yyyy-MM')=date_format('2020-03-10','yyyy-MM')
)mncount on daycount.dt=mncount.dt;
3)查询导入结果
select * from ads_uv_count;
1.1.2 每日新增设备
1)建表语句
drop table if exists ads_new_mid_count;
create external table ads_new_mid_count
(
`create_date` string comment '创建时间' ,
`new_mid_count` BIGINT comment '新增设备数量'
) COMMENT '每日新增设备信息数量'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_new_mid_count/';
2)导入数据
insert into table ads_new_mid_count
select
login_date_first,
count(*)
from dwt_uv_topic
where login_date_first='2020-03-10'
group by login_date_first;
3)查询导入数据
select * from ads_new_mid_count;
1.1.3 沉默用户数
需求定义:
沉默用户:只在安装当天启动过,且启动时间是在 7 天前
1)建表语句
drop table if exists ads_silent_count;
create external table ads_silent_count(
`dt` string COMMENT '统计日期',
`silent_count` bigint COMMENT '沉默设备数'
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_silent_count';
2)导入 2020-03-20 数据
insert into table ads_silent_count
select
'2020-03-15',
count(*)
from dwt_uv_topic
where login_date_first=login_date_last
and login_date_last<=date_add('2020-03-15',-7);
3)查询导入数据
select * from ads_silent_count;
1.1.4 本周回流用户数
需求定义:
本周回流用户:上周未活跃,本周活跃的设备,且不是本周新增设备
1)建表语句
drop table if exists ads_back_count;
create external table ads_back_count(
`dt` string COMMENT '统计日期',
`wk_dt` string COMMENT '统计日期所在周',
`wastage_count` bigint COMMENT '回流设备数'
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_back_count';
2)导入数据:
insert into table ads_back_count
select
'2020-03-15',
count(*)
from
(
select
mid_id
from dwt_uv_topic
where login_date_last>=date_add(next_day('2020-03-15','MO'),-7)
and login_date_last<= date_add(next_day('2020-03-15','MO'),-1)
and login_date_first<date_add(next_day('2020-03-15','MO'),-7)
)current_wk
left join
(
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('2020-03-15','MO'),-7*2)
and dt<= date_add(next_day('2020-03-15','MO'),-7-1)
group by mid_id
)last_wk
on current_wk.mid_id=last_wk.mid_id
where last_wk.mid_id is null;
3)查询结果
select * from ads_back_count;
1.1.5 流失用户数
需求定义:
流失用户:最近 7 天未活跃的设备
1)建表语句
drop table if exists ads_wastage_count;
create external table ads_wastage_count(
`dt` string COMMENT '统计日期',
`wastage_count` bigint COMMENT '流失设备数'
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_wastage_count';
2)导入 2020-03-20 数据
insert into table ads_wastage_count
select
'2020-03-20',
count(*)
from
(
select
mid_id
from dwt_uv_topic
where login_date_last<=date_add('2020-03-20',-7)
group by mid_id
)t1;
3)查询结果
select * from ads_wastage_count;
1.1.6 留存率
1)建表语句
drop table if exists ads_user_retention_day_rate;
create external table ads_user_retention_day_rate
(
`stat_date` string comment '统计日期',
`create_date` string comment '设备新增日期',
`retention_day` int comment '截止当前日期留存天数',
`retention_count` bigint comment '留存数量',
`new_mid_count` bigint comment '设备新增数量',
`retention_ratio` decimal(10,2) comment '留存率'
) COMMENT '每日用户留存情况'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_retention_day_rate/';
2)导入数据
insert into table ads_user_retention_day_rate
select
'2020-03-10',--统计日期
date_add('2020-03-10',-1),--新增日期
1,--留存天数
sum(if(login_date_first=date_add('2020-03-10',-1) and
login_date_last='2020-03-10',1,0)),--2020-03-09 的 1 日留存数
sum(if(login_date_first=date_add('2020-03-10',-1),1,0)),--2020-03-09 新增
sum(if(login_date_first=date_add('2020-03-10',-1) and
login_date_last='2020-03-10',1,0))/sum(if(login_date_first=date_add('2020-03-10',-
1),1,0))*100
from dwt_uv_topic
union all
select
'2020-03-10',--统计日期
date_add('2020-03-10',-2),--新增日期
2,--留存天数
sum(if(login_date_first=date_add('2020-03-10',-2) and
login_date_last='2020-03-10',1,0)),--2020-03-08 的 2 日留存数
sum(if(login_date_first=date_add('2020-03-10',-2),1,0)),--2020-03-08 新增
sum(if(login_date_first=date_add('2020-03-10',-2) and
login_date_last='2020-03-10',1,0))/sum(if(login_date_first=date_add('2020-03-10',-
2),1,0))*100
from dwt_uv_topic
union all
select
'2020-03-10',--统计日期
date_add('2020-03-10',-3),--新增日期
3,--留存天数
sum(if(login_date_first=date_add('2020-03-10',-3) and
login_date_last='2020-03-10',1,0)),--2020-03-07 的 3 日留存数
sum(if(login_date_first=date_add('2020-03-10',-3),1,0)),--2020-03-07 新增
sum(if(login_date_first=date_add('2020-03-10',-3) and
login_date_last='2020-03-10',1,0))/sum(if(login_date_first=date_add('2020-03-10',-
3),1,0))*100
from dwt_uv_topic;
3)查询导入数据
select * from ads_user_retention_day_rate;
1.1.7 最近连续三周活跃用户数
1)建表语句
drop table if exists ads_continuity_wk_count;
create external table ads_continuity_wk_count(
`dt` string COMMENT '统计日期,一般用结束周周日日期,如果每天计算一次,可用当天日
期',
`wk_dt` string COMMENT '持续时间',
`continuity_count` bigint COMMENT '活跃次数'
)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_wk_count';
2)导入 2020-03-20 所在周的数据
insert into table ads_continuity_wk_count
select
'2020-03-15',
concat(date_add(next_day('2020-03-15','MO'),-7*3),'_',date_add(next_day('
2020-03-15','MO'),-1)),
count(*)
from
(
select
mid_id
from
(
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('2020-03-10','monday'),-7)
and dt<=date_add(next_day('2020-03-10','monday'),-1)
group by mid_id
union all
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('2020-03-10','monday'),-7*2)
and dt<=date_add(next_day('2020-03-10','monday'),-7-1)
group by mid_id
union all
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('2020-03-10','monday'),-7*3)
and dt<=date_add(next_day('2020-03-10','monday'),-7*2-1)
group by mid_id
)t1
group by mid_id
having count(*)=3
)t2
3)查询
select * from ads_continuity_wk_count;
1.1.8 最近七天内连续三天活跃用户数
1)建表语句
drop table if exists ads_continuity_uv_count;
create external table ads_continuity_uv_count(
`dt` string COMMENT '统计日期',
`wk_dt` string COMMENT '最近 7 天日期',
`continuity_count` bigint
) COMMENT '连续活跃设备数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_uv_count';
2)写出导入数据的 SQL 语句
insert into table ads_continuity_uv_count
select
'2020-03-12',
concat(date_add('2020-03-12',-6),'_','2020-03-12'),
count(*)
from
(
select mid_id
from
(
select mid_id
from
(
select
mid_id,
date_sub(dt,rank) date_dif
from
(
select
mid_id,
dt,
rank() over(partition by mid_id order by dt) rank
from dws_uv_detail_daycount
where dt>=date_add('2020-03-12',-6) and
dt<='2020-03-12'
)t1
)t2
group by mid_id,date_dif
having count(*)>=3
)t3
group by mid_id
)t4;
3)查询
select * from ads_continuity_uv_count;
7.2 会员主题
7.2.1 会员主题信息
1)建表
drop table if exists ads_user_topic;
create external table ads_user_topic(
`dt` string COMMENT '统计日期',
`day_users` string COMMENT '活跃会员数',
`day_new_users` string COMMENT '新增会员数',
`day_new_payment_users` string COMMENT '新增消费会员数',
`payment_users` string COMMENT '总付费会员数',
`users` string COMMENT '总会员数',
`day_users2users` decimal(10,2) COMMENT '会员活跃率',
`payment_users2users` decimal(10,2) COMMENT '会员付费率',
`day_new_users2users` decimal(10,2) COMMENT '会员新鲜度'
) COMMENT '会员主题信息表'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_topic';
2)导入数据
insert into table ads_user_topic
select
'2020-03-10',
sum(if(login_date_last='2020-03-10',1,0)),
sum(if(login_date_first='2020-03-10',1,0)),
sum(if(payment_date_first='2020-03-10',1,0)),
sum(if(payment_count>0,1,0)),
count(*),
sum(if(login_date_last='2020-03-10',1,0))/count(*),
sum(if(payment_count>0,1,0))/count(*),
sum(if(login_date_first='2020-03-10',1,0))/sum(if(login_date_last='2020-03-10',1,0))
from dwt_user_topic
3)查询数据
hive (gmall)> select * from ads_user_topic;
4)vim ads_user_topic.sh
添加如下内容:
#!/bin/bash
APP=gmall
hive=/opt/modules/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
with
tmp_day_users as
(
select
'$do_date' dt,
count(*) day_users
from
${APP}.dwt_user_topic
where
login_date_last='$do_date'
),
tmp_day_new_users as
(
select
'$do_date' dt,
count(*) day_new_users
from
${APP}.dwt_user_topic
where
login_date_last='$do_date' and login_date_first='$do_date'
),
tmp_day_new_payment_users as
(
select
'$do_date' dt,
count(*) day_new_payment_users
from
${APP}.dwt_user_topic
where
payment_date_first='$do_date'
),
tmp_payment_users as
(
select
'$do_date' dt,
count(*) payment_users
from
${APP}.dwt_user_topic
where
payment_date_first is not null
),
tmp_users as
(
select
'$do_date' dt,
count(*) users
from
${APP}.dwt_user_topic
tmp_users
)
insert into table ${APP}.ads_user_topic
select
'$do_date' dt,
day_users,
day_new_users,
day_new_payment_users,
payment_users,
users,
day_users/users,
payment_users/users,
day_new_users/users
from
tmp_day_users
join
tmp_day_new_users
on
tmp_day_users.dt=tmp_day_new_users.dt
join
tmp_day_new_payment_users
on
tmp_day_users.dt=tmp_day_new_payment_users.dt
join
tmp_payment_users
on
tmp_day_users.dt=tmp_payment_users.dt
join
tmp_users
on
tmp_day_users.dt=tmp_users.dt;
"
$hive -e "$sql"
5)增加脚本执行权限
chmod 770 ads_user_topic.sh
6)执行脚本导入数据
ads_user_topic.sh 2020-03-11
7)查看导入数据
select * from ads_user_topic;
7.2.2 漏斗分析
统计“浏览->购物车->下单->支付”的转化率
思路:统计各个行为的人数,然后计算比值
1)建表语句
drop table if exists ads_user_action_convert_day;
create external table ads_user_action_convert_day(
`dt` string COMMENT '统计日期',
`total_visitor_m_count` bigint COMMENT '总访问人数',
`cart_u_count` bigint COMMENT '加入购物车的人数',
`visitor2cart_convert_ratio` decimal(10,2) COMMENT '访问到加入购物车转化率',
`order_u_count` bigint COMMENT '下单人数',
`cart2order_convert_ratio` decimal(10,2) COMMENT '加入购物车到下单转化率',
`payment_u_count` bigint COMMENT '支付人数',
`order2payment_convert_ratio` decimal(10,2) COMMENT '下单到支付的转化率'
) COMMENT '用户行为漏斗分析'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_action_convert_day/';
2)数据装载
insert into table ads_user_action_convert_day
select
'2020-03-10',
uv.day_count,
ua.cart_count,
cast(ua.cart_count/uv.day_count as decimal(10,2)) visitor2cart_convert_ratio,
ua.order_count,
cast(ua.order_count/ua.cart_count as decimal(10,2)) visitor2order_convert_ratio,
ua.payment_count,
cast(ua.payment_count/ua.order_count as decimal(10,2)) order2payment_convert_ratio
from
(
select
dt,
sum(if(cart_count>0,1,0)) cart_count,
sum(if(order_count>0,1,0)) order_count,
sum(if(payment_count>0,1,0)) payment_count
from dws_user_action_daycount
where dt='2020-03-10'
group by dt
)ua join ads_uv_count uv on uv.dt=ua.dt;
3)查询加载数据
select * from ads_user_action_convert_day;
7.3 商品主题
7.3.1 商品个数信息
1)建表语句
drop table if exists ads_product_info;
create external table ads_product_info(
`dt` string COMMENT '统计日期',
`sku_num` string COMMENT 'sku 个数',
`spu_num` string COMMENT 'spu 个数'
) COMMENT '商品个数信息'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_info';
2)导入数据
insert into table ads_product_info
select
'2020-03-10' dt,
sku_num,
spu_num
from
(
select
'2020-03-10' dt,
count(*) sku_num
from
dwt_sku_topic
) tmp_sku_num
join
(
select
'2020-03-10' dt,
count(*) spu_num
from
(
select
spu_id
from
dwt_sku_topic
group by
spu_id
) tmp_spu_id
) tmp_spu_num
on
tmp_sku_num.dt=tmp_spu_num.dt;
3)查询结果数据
select * from ads_product_info;
7.3.2 商品销量排名
1)建表语句
drop table if exists ads_product_sale_topN;
create external table ads_product_sale_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`payment_amount` bigint COMMENT '销量'
) COMMENT '商品个数信息'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_sale_topN';
2)导入数据
insert into table ads_product_sale_topN
select
'2020-03-10' dt,
sku_id,
payment_amount
from
dws_sku_action_daycount
where
dt='2020-03-10'
order by payment_amount desc
limit 10;
3)查询结果数据
select * from ads_product_sale_topN;
7.3.3 商品收藏排名
1)建表语句
drop table if exists ads_product_favor_topN;
create external table ads_product_favor_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`favor_count` bigint COMMENT '收藏量'
) COMMENT '商品收藏 TopN'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_favor_topN';
2)导入数据
insert into table ads_product_favor_topN
select
'2020-03-10' dt,
sku_id,
favor_count
from
dws_sku_action_daycount
where
dt='2020-03-10'
order by favor_count desc
limit 10;
3)查询数据
select * from ads_product_favor_topN;
7.3.4 商品加入购物车排名
1)建表语句
drop table if exists ads_product_cart_topN;
create external table ads_product_cart_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`cart_num` bigint COMMENT '加入购物车数量'
) COMMENT '商品加入购物车 TopN'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_cart_topN';
2)导入数据
insert into table ads_product_cart_topN
select
'2020-03-10' dt,
sku_id,
cart_num
from
dws_sku_action_daycount
where
dt='2020-03-10'
order by cart_num desc
limit 10;
3)查询数据
select * from ads_product_cart_topN;
7.3.5 商品退款率排名(最近 30 天)
1)建表语句
drop table if exists ads_product_refund_topN;
create external table ads_product_refund_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`refund_ratio` decimal(10,2) COMMENT '退款率'
) COMMENT '商品退款率 TopN'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_product_refund_topN';
2)导入数据
insert into table ads_product_refund_topN
select
'2020-03-10',
sku_id,
refund_last_30d_count/payment_last_30d_count*100 refund_ratio
from dwt_sku_topic
order by refund_ratio desc
limit 10;
3)查询数据
select * from ads_product_refund_topN;
7.3.6 商品差评率
1)建表语句
drop table if exists ads_appraise_bad_topN;
create external table ads_appraise_bad_topN(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`appraise_bad_ratio` decimal(10,2) COMMENT '差评率'
) COMMENT '商品差评率 TopN'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_appraise_bad_topN';
2)导入数据
insert into table ads_appraise_bad_topN
select
'2020-03-10' dt,
sku_id,
appraise_bad_count/(appraise_good_count+appraise_mid_count+appraise_bad_coun
t+appraise_default_count) appraise_bad_ratio
from
dws_sku_action_daycount
where
dt='2020-03-10'
order by appraise_bad_ratio desc
limit 10;
3)查询数据
select * from ads_appraise_bad_topN;
7.4 营销主题(用户+商品+购买行为)
7.4.1 下单数目统计
需求分析:统计每日下单数,下单金额及下单用户数
1)建表语句
drop table if exists ads_order_daycount;
create external table ads_order_daycount(
dt string comment '统计日期',
order_count bigint comment '单日下单笔数',
order_amount decimal(10,2) comment '单日下单金额',
order_users bigint comment '单日下单用户数'
) comment '每日订单总计表'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_order_daycount';
2)导入数据
insert into table ads_order_daycount
select
'2020-03-10',
sum(order_count),
sum(order_amount),
sum(if(order_count>0,1,0))
from dws_user_action_daycount
where dt='2020-03-10';
3)查询数据
select * from ads_order_daycount;
7.4.2 支付信息统计
每日支付金额、支付人数、支付商品数、支付笔数以及下单到支付的平均时长(取自 DWD)
1)建表
drop table if exists ads_payment_daycount;
create external table ads_payment_daycount(
dt string comment '统计日期',
payment_count bigint comment '单日支付笔数',
payment_amount decimal(10,2) comment '单日支付金额',
payment_user_count bigint comment '单日支付人数',
payment_sku_count bigint comment '单日支付商品数',
payment_avg_time double comment '下单到支付的平均时长,取分钟数'
) comment '每日订单总计表'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_payment_daycount';
2)导入数据
insert into table ads_payment_daycount
select
tmp_payment.dt,
tmp_payment.payment_count,
tmp_payment.payment_amount,
tmp_payment.payment_user_count,
tmp_skucount.payment_sku_count,
tmp_time.payment_avg_time
from
(
select
'2020-03-15' dt,
sum(payment_count) payment_count,
sum(payment_amount) payment_amount,
sum(if(payment_count>0,1,0)) payment_user_count
from dws_user_action_daycount
where dt='2020-03-15'
)tmp_payment
join
(
select
'2020-03-15' dt,
sum(if(payment_count>0,1,0)) payment_sku_count
from dws_sku_action_daycount
where dt='2020-03-15'
)tmp_skucount on tmp_payment.dt=tmp_skucount.dt
join
(
select
'2020-03-15' dt,
sum(unix_timestamp(payment_time)-unix_timestamp(create_time))/count(*)/60
payment_avg_time
from dwd_fact_order_info
where dt='2020-03-15'
and payment_time is not null
)tmp_time on tmp_payment.dt=tmp_time.dt
3)查询数据
select * from ads_payment_daycount;
7.4.3 复购率
1)建表语句
drop table ads_sale_tm_category1_stat_mn;
create external table ads_sale_tm_category1_stat_mn
(
tm_id string comment '品牌 id',
category1_id string comment '1 级品类 id ',
category1_name string comment '1 级品类名称 ',
buycount bigint comment '购买人数',
buy_twice_last bigint comment '两次以上购买人数',
buy_twice_last_ratio decimal(10,2) comment '单次复购率',
buy_3times_last bigint comment '三次以上购买人数',
buy_3times_last_ratio decimal(10,2) comment '多次复购率',
stat_mn string comment '统计月份',
stat_date string comment '统计日期'
) COMMENT '复购率统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_sale_tm_category1_stat_mn/';
2)数据导入
insert into table ads_sale_tm_category1_stat_mn
select
mn.sku_tm_id,
mn.sku_category1_id,
mn.sku_category1_name,
sum(if(mn.order_count>=1,1,0)) buycount,
sum(if(mn.order_count>=2,1,0)) buyTwiceLast,
sum(if(mn.order_count>=2,1,0))/sum( if(mn.order_count>=1,1,0))
buyTwiceLastRatio,
sum(if(mn.order_count>=3,1,0)) buy3timeLast ,
sum(if(mn.order_count>=3,1,0))/sum( if(mn.order_count>=1,1,0))
buy3timeLastRatio ,
date_format('2020-03-10' ,'yyyy-MM') stat_mn,
'2020-03-10' stat_date
from
(
select
user_id,
sd.sku_tm_id,
sd.sku_category1_id,
sd.sku_category1_name,
sum(order_count) order_count
from dws_sale_detail_daycount sd
where date_format(dt,'yyyy-MM')=date_format('2020-03-10' ,'yyyy-MM')
group by user_id, sd.sku_tm_id, sd.sku_category1_id, sd.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name;
7.5 ADS 层导入脚本
1)vim dwt_to_ads.sh
在脚本中填写如下内容
#!/bin/bash
hive=/opt/modules/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="use gmall;
insert into table ads_uv_count
select
'$do_date',
sum(if(login_date_last='$do_date',1,0)),
sum(if(login_date_last>=date_add(next_day('$do_date','monday'),-7) and
login_date_last<=date_add(next_day('$do_date','monday'),-1) ,1,0)),
sum(if(date_format(login_date_last,'yyyy-MM')=date_format('$do_date','yyyy-M
M'),1,0)),
if('$do_date'=date_add(next_day('$do_date','monday'),-1),'Y','N'),
if('$do_date'=last_day('$do_date'),'Y','N')
from dwt_uv_topic;
insert into table ads_new_mid_count
select
'$do_date',
count(*)
from dwt_uv_topic
where login_date_first='$do_date';
insert into table ads_silent_count
select
'$do_date',
count(*)
from dwt_uv_topic
where login_date_first=login_date_last
and login_date_last<=date_add('$do_date',-7);
insert into table ads_back_count
select
'$do_date',
concat(date_add(next_day('2020-03-10','MO'),-7),'_',date_add(next_day('2020-
03-10','MO'),-1)),
count(*)
from
(
select
mid_id
from dwt_uv_topic
where login_date_last>=date_add(next_day('$do_date','MO'),-7)
and login_date_last<= date_add(next_day('$do_date','MO'),-1)
and login_date_first<date_add(next_day('$do_date','MO'),-7)
)current_wk
left join
(
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','MO'),-7*2)
and dt<= date_add(next_day('$do_date','MO'),-7-1)
group by mid_id
)last_wk
on current_wk.mid_id=last_wk.mid_id
where last_wk.mid_id is null;
insert into table ads_wastage_count
select
'$do_date',
count(*)
from dwt_uv_topic
where login_date_last<=date_add('$do_date',-7);
insert into table ads_user_retention_day_rate
select
'$do_date',
date_add('$do_date',-3),
3,
sum(if(login_date_first=date_add('$do_date',-3) and
login_date_last='$do_date',1,0)),
sum(if(login_date_first=date_add('$do_date',-3),1,0)),
sum(if(login_date_first=date_add('$do_date',-3) and
login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',
-3),1,0))*100
from dwt_uv_topic
union all
select
'$do_date',
date_add('$do_date',-2),
2,
sum(if(login_date_first=date_add('$do_date',-2) and
login_date_last='$do_date',1,0)),
sum(if(login_date_first=date_add('$do_date',-2),1,0)),
sum(if(login_date_first=date_add('$do_date',-2) and
login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',
-2),1,0))*100
from dwt_uv_topic
union all
select
'$do_date',
date_add('$do_date',-1),
1,
sum(if(login_date_first=date_add('$do_date',-1) and
login_date_last='$do_date',1,0)),
sum(if(login_date_first=date_add('$do_date',-1),1,0)),
sum(if(login_date_first=date_add('$do_date',-1) and
login_date_last='$do_date',1,0))/sum(if(login_date_first=date_add('$do_date',
-1),1,0))*100
from dwt_uv_topic;
insert into table ads_continuity_wk_count
select
'$do_date',
concat(date_add(next_day('$do_date','MO'),-7*3),'_',date_add(next_day('$do_d
ate','MO'),-1)),
count(*)
from
(
select
mid_id
from
(
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','monday'),-7)
and dt<=date_add(next_day('$do_date','monday'),-1)
group by mid_id
union all
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','monday'),-7*2)
and dt<=date_add(next_day('$do_date','monday'),-7-1)
group by mid_id
union all
select
mid_id
from dws_uv_detail_daycount
where dt>=date_add(next_day('$do_date','monday'),-7*3)
and dt<=date_add(next_day('$do_date','monday'),-7*2-1)
group by mid_id
)t1
group by mid_id
having count(*)=3
)t2;
insert into table ads_continuity_uv_count
select
'$do_date',
concat(date_add('$do_date',-6),'_','$do_date'),
count(*)
from
(
select mid_id
from
(
select mid_id
from
(
select
mid_id,
date_sub(dt,rank) date_dif
from
(
select
mid_id,
dt,
rank() over(partition by mid_id order by dt) rank
from dws_uv_detail_daycount
where dt>=date_add('$do_date',-6) and dt<='$do_date'
)t1
)t2
group by mid_id,date_dif
having count(*)>=3
)t3
group by mid_id
)t4;
insert into table ads_user_topic
select
'$do_date',
sum(if(login_date_last='$do_date',1,0)),
sum(if(login_date_first='$do_date',1,0)),
sum(if(payment_date_first='$do_date',1,0)),
sum(if(payment_count>0,1,0)),
count(*),
sum(if(login_date_last='$do_date',1,0))/count(*),
sum(if(payment_count>0,1,0))/count(*),
sum(if(login_date_first='$do_date',1,0))/sum(if(login_date_last='$do_date',1,
0))
from dwt_user_topic;
insert into table ads_user_action_convert_day
select
'$do_date',
uv.day_count,
ua.cart_count,
ua.cart_count/uv.day_count*100 visitor2cart_convert_ratio,
ua.order_count,
ua.order_count/ua.cart_count*100 visitor2order_convert_ratio,
ua.payment_count,
ua.payment_count/ua.order_count*100 order2payment_convert_ratio
from
(
select
'$do_date' dt,
sum(if(cart_count>0,1,0)) cart_count,
sum(if(order_count>0,1,0)) order_count,
sum(if(payment_count>0,1,0)) payment_count
from dws_user_action_daycount
where dt='$do_date'
)ua join ads_uv_count uv on uv.dt=ua.dt;
insert into table ads_product_info
select
'$do_date' dt,
sku_num,
spu_num
from
(
select
'$do_date' dt,
count(*) sku_num
from
dwt_sku_topic
) tmp_sku_num
join
(
select
'$do_date' dt,
count(*) spu_num
from
(
select
spu_id
from
dwt_sku_topic
group by
spu_id
) tmp_spu_id
) tmp_spu_num
on tmp_sku_num.dt=tmp_spu_num.dt;
insert into table ads_product_sale_topN
select
'$do_date',
sku_id,
payment_amount
from dws_sku_action_daycount
where dt='$do_date'
order by payment_amount desc
limit 10;
insert into table ads_product_favor_topN
select
'$do_date',
sku_id,
favor_count
from dws_sku_action_daycount
where dt='$do_date'
order by favor_count
limit 10;
insert into table ads_product_cart_topN
select
'$do_date' dt,
sku_id,
cart_num
from dws_sku_action_daycount
where dt='$do_date'
order by cart_num
limit 10;
insert into table ads_product_refund_topN
select
'$do_date',
sku_id,
refund_last_30d_count/payment_last_30d_count*100 refund_ratio
from dwt_sku_topic
order by refund_ratio desc
limit 10;
insert into table ads_appraise_bad_topN
select
'$do_date' dt,
sku_id,
appraise_bad_count/(appraise_bad_count+appraise_good_count+appraise_mid_coun
t+appraise_default_count)*100 appraise_bad_ratio
from dws_sku_action_daycount
where dt='$do_date'
order by appraise_bad_ratio desc
limit 10;
insert into table ads_order_daycount
select
'$do_date',
sum(order_count),
sum(order_amount),
sum(if(order_count>0,1,0))
from dws_user_action_daycount
where dt='$do_date';
insert into table ads_payment_daycount
select
tmp_payment.dt,
tmp_payment.payment_count,
tmp_payment.payment_amount,
tmp_payment.payment_user_count,
tmp_skucount.payment_sku_count,
tmp_time.payment_avg_time
from
(
select
'$do_date' dt,
sum(payment_count) payment_count,
sum(payment_amount) payment_amount,
sum(if(payment_count>0,1,0)) payment_user_count
from dws_user_action_daycount
where dt='$do_date'
)tmp_payment
join
(
select
'$do_date' dt,
sum(if(payment_count>0,1,0)) payment_sku_count
from dws_sku_action_daycount
where dt='$do_date'
)tmp_skucount on tmp_payment.dt=tmp_skucount.dt
join
(
select
'$do_date' dt,
sum(unix_timestamp(payment_time)-unix_timestamp(create_time))/count(*)/60
payment_avg_time
from dwd_fact_order_info
where dt='$do_date'
and payment_time is not null
)tmp_time on tmp_payment.dt=tmp_time.dt;
insert into table ads_sale_tm_category1_stat_mn
select
mn.sku_tm_id,
mn.sku_category1_id,
mn.sku_category1_name,
sum(if(mn.order_count>=1,1,0)) buycount,
sum(if(mn.order_count>=2,1,0)) buyTwiceLast,
sum(if(mn.order_count>=2,1,0))/sum( if(mn.order_count>=1,1,0))
buyTwiceLastRatio,
sum(if(mn.order_count>=3,1,0)) buy3timeLast ,
sum(if(mn.order_count>=3,1,0))/sum( if(mn.order_count>=1,1,0))
buy3timeLastRatio ,
date_format('$do_date' ,'yyyy-MM') stat_mn,
'$do_date' stat_date
from
(
select
user_id,
sd.sku_tm_id,
sd.sku_category1_id,
sd.sku_category1_name,
sum(order_count) order_count
from dws_sale_detail_daycount sd
where date_format(dt,'yyyy-MM')=date_format('$do_date' ,'yyyy-MM')
group by user_id, sd.sku_tm_id, sd.sku_category1_id, sd.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name;
"
$hive -e "$sql"
2)增加脚本执行权限
chmod 770 dwt_to_ads.sh
3)执行脚本导入数据
dwt_to_ads.sh 2020-03-10
4)查看导入数据