判断题
1.存在一棵总共有2016个结点的二叉树,其中有16个结点只有一个孩子。 (3分)
2.设只包含根结点的二叉树高度为0,则高度为k的二叉树最小结点数为k+1。 (2分)
3.在含有n个结点的树中,边数只能是n-1条。 (1分)
4.完全二叉树中,若一个结点没有左孩子,则它必是树叶。 (1分)
5.已知一棵二叉树的先序遍历结果是ABC, 则CAB不可能是中序遍历结果。 (2分)
6.二叉树是度为 2 的树。(2分)
7.具有10个叶结点的二叉树中,有9个度为2的结点。 (1分)
8.某二叉树的前序和中序遍历序列正好一样,则该二叉树中的任何结点一定都无左孩子。 (2分)
9.若一个结点是某二叉树的中序遍历序列的最后一个结点,则它必是该树的前序遍历序列中的最后一个结点。 (2分)
10.某二叉树的前序和中序遍历序列正好一样,则该二叉树中的任何结点一定都无右孩子。 (2分)
11.若A和B都是一棵二叉树的叶子结点,则存在这样的二叉树,其前序遍历序列为…A…B…,而中序遍历序列为…B…A…。 (2分)
12.二叉树的前序遍历并不能唯一确定这棵树,但是如果我们还知道该树的根结点是那一个,则可以确定这棵二叉树( )。 (1分)
13.将一棵完全二叉树存于数组中(根结点的下标为1)。则下标为23和24的两个结点是兄弟。 (1分)
选择题
1.树最适合于用来表示 (1分)
选项 A 有序数据元素 B 无序数据元素 C 元素之间无联系的数据 D 元素之间具有分支层次关系的数据
2.某二叉树的前序和后序遍历序列正好相反,则该二叉树一定是 (2分)
选项 A 空或只有一个结点 B 高度等于其结点数 C 任一结点无左孩子 D 任一结点无右孩子
3.设n、m为一棵二叉树上的两个结点,在中序遍历时,n在m前的条件是 (3分)
选项 A n在m左方 B n在m右方 C n是m祖先 D n是m子孙
4.二叉树中第5层(根的层号为1)上的结点个数最多为:(2分)
5.先序遍历图示二叉树的结果为 (2分)
选项 A A,B,C,D,H,E,I,F,G B A,B,D,H,I,E,C,F,G C H,D,I,B,E,A,F,C,G D H,I,D,B,E,F,G,A,C
6.设树T的度为4,其中度为1、2、3、4的结点个数分别为4、2、1、1。则T中有多少个叶子结点? (3分)
7.设每个d叉树的结点有d个指针指向子树,有n个结点的d叉树有多少空链域? (2分)
选项 A nd B n(d−1) C n(d−1)+1 D 以上都不是
8.已知一棵二叉树的先序遍历结果是ABC,则以下哪个序列是不可能的中序遍历结果: (2分)
9.给定二叉树如下图所示。设N代表二叉树的根,L代表根结点的左子树,R代表根结点的右子树。若遍历后的结点序列为3、1、7、5、6、2、4,则其遍历方式是: (2分)
10.设高为h的二叉树(规定叶子结点的高度为1)只有度为0和2的结点,则此类二叉树的最少结点数和最多结点数分别为: (3分)
选项 A 2h, 2h −1 B 2h−1, 2h −1 C 2h−1, 2h-1 −1 D 2h-1 +1, 2h −1
11.在下述结论中,正确的是: (2分)
①只有一个结点的二叉树的度为0;
②二叉树的度为2;
③二叉树的左右子树可任意交换;
④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树。
12.任何一棵二叉树的叶结点在先序、中序和后序遍历序列中的相对次序 (2分)
选项 A 发生改变 B 不发生改变 C 不能确定 D 以上都不对
13.如果二叉树的前序遍历结果是12345,后序遍历结果是32541,那么该二叉树的中序遍历结果是什么? (2分)
选项 A 23145 B 23154 C 24135 D 无法确定
14.要使一棵非空二叉树的先序序列与中序序列相同,其所有非叶结点须满足的条件是:(2分)
选项 A 只有左子树 B 只有右子树 C 结点的度均为1 D 结点的度均为2
15.已知一棵二叉树的树形如下图所示,其后序序列为{ e, a, c, b, d, g, f }。树中与结点a同层的结点是:(3分)
16.如果二叉树的后序遍历结果是FDEBGCA,中序遍历结果是FDBEACG,那么该二叉树的前序遍历结果是什么? (2分)
选项 A ABCDEFG B ABDFEGC C ABDFECG D ABDEFCG
17.已知二叉树的后序遍历是dabec,中序遍历是debac,则其前序遍历是()。 (2分)
选项 A acbed B decab C deabc D cedba
18.某二叉树的先序序列和后序序列正好相反,则下列说法错误的是()。 (2分)
选项 A 二叉树不存在 B 若二叉树不为空,则二叉树的深度等于结点数 C 若二叉树不为空,则任一结点不能同时拥有左孩子和右孩子 D 若二叉树不为空,则任一结点的度均为1
19.对二叉树的结点从1开始进行编号,要求每个结点的编号大于其左右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用()遍历实现编号。 (2分)
20.在一非空二叉树的中序遍历中,根结点的右边()。 (2分)
选项 A 只有右子树上的所有结点 B 只有右子树上的部分结点 C 只有左子树上的部分结点 D 只有左子树上的全部结点
21.一棵树可转换成为与其对应的二叉树,则下面叙述正确的是()。 (2分)
选项 A 树的先根遍历序列与其对应的二叉树的先序遍历相同 B 树的后根遍历序列与其对应的二叉树的后序遍历相同 C 树的先根遍历序列与其对应的二叉树的中序遍历相同 D 以上都不对
22.已知一棵二叉树的先序序列和中序序列分别为GFDBHCEA和DFHBGCAE,则该二叉树的后序序列为()。 (2分)
选项 A DHBFAECG B DHBFEACG C DBHFAECG D DFAEHBCG
23.设x和y是二叉树中的任意两个结点,若在先序遍历中x在y之前,而在后序遍历中x在y之后,则x和y的关系是()。 (2分)
选项 A x是y的左兄弟 B x是y的右兄弟 C x是y的祖先 D x是y的子孙
24.以下算法的功能是()。 (4分)
int function ( BTreeNode* BT, ElemType x) {
int n= 0 ;
if ( BT!= NULL )
{
if ( BT-> data== x) n++ ;
n+ = function ( BT-> left, x) ;
n+ = function ( BT-> right, x) ;
}
return n;
}
选项 A 求二叉树结点个数 B 求二叉树中值为x的结点个数 C 求二叉树中值为x结点为根的子树结点数 D 求二叉树左右子树结点数
25.以下算法的功能是()。 (4分)
void test ( bitree * t)
{
if ( t)
{
test ( t-> lchild) ;
test ( t-> rchild) ;
cout<< t-> data;
}
}
选项 A 输出二叉树的根结点值 B 前序遍历二叉树 C 中序遍历二叉树 D 后序遍历二叉树
26.一棵有1025个结点的二叉树的高度为多少? (2分)
选项 A 10 B 11 C 11~1025之间 D 10~1024之间
27.一棵度为4的树中有20个度为4的结点、10个度为3的结点、1个度为2的结点和10个度为1的结点, 则叶子结点有多少个? (2分)
程序填空题
1.下列代码的功能是将二叉树T中的结点按照层序遍历的顺序输出。
typedef struct TreeNode * Tree;
struct TreeNode
{
int Key;
Tree Left;
Tree Right;
} ;
void Level_order ( Tree T )
{
Queue Q;
if ( ! T ) return ;
Q = CreateQueue ( MaxElements ) ;
Enqueue ( T, Q ) ;
while ( ! IsEmpty ( Q ) ) {
T = Front_Dequeue ( Q ) ;
printf ( "%d " , T-> Key) ;
if ( T-> Left )
Enqueue ( T-> Left, Q) ( 3 分) ;
if ( T-> Right ( 3 分) )
Enqueue ( T-> Right, Q) ( 3 分) ;
}
}