通信网系列实验(一)——基于DFS算法的Ryu+Mininet应用

本文介绍了如何在Mininet上使用Ryu控制器,通过DFS算法寻找并配置20节点网络的最短和最长路径。详细步骤包括网络搭建、Ryu与Mininet的连接、拓扑可视化、DFS算法实现以及路径配置和网络验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用DFS算法,实现Ryu应用,并在Mininet上完成相关验证

Ryu与Mininet相关安装与配置详见:

https://blog.csdn.net/haimianxiaojie/article/details/50705288

关于本文内所有完整代码详见:

https://github.com/PPPerry/Ryu_projects中的DFS部分

实现内容如下:

  1. 在Mininet上搭建一个20个节点网络(拓扑给定),每个网络节点下挂一个主机;
    在这里插入图片描述
    按照如图所示的拓扑,编写mininet的拓扑代码,各个交换机与主机的序号均相同。
    完整的拓扑代码如下:

    #!/usr/bin/python
    
    from mininet.net import Mininet
    from mininet.node import Controller, RemoteController, OVSController
    from mininet.node import CPULimitedHost, Host, Node
    from mininet.node import OVSKernelSwitch, UserSwitch
    from mininet.node import IVSSwitch
    from mininet.cli import CLI
    from mininet.log import setLogLevel, info
    from mininet.link import TCLink, Intf
    from subprocess import call
    
    def myNetwork():
    
        net = Mininet( topo=None,
                       controller=None,
                       ipBase='10.0.0.0/8')
        
        ## specify clearly to use a remote controller instead of the default one 
        c=RemoteController('c','0.0.0.0',6633)
        net.addController(c)
    
        info( '*** Add switches\n')
        s2 = net.addSwitch('s2', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s11 = net.addSwitch('s11', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s3 = net.addSwitch('s3', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s8 = net.addSwitch('s8', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s4 = net.addSwitch('s4', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s6 = net.addSwitch('s6', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s7 = net.addSwitch('s7', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s5 = net.addSwitch('s5', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s10 = net.addSwitch('s10', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s9 = net.addSwitch('s9', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s1 = net.addSwitch('s1', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s12 = net.addSwitch('s12', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
        s13 = net.addSwitch('s13', cls=OVSKernelSwitch,protocols=['OpenFlow13'])
    
        info( '*** Add hosts\n')
        h3 = net.addHost('h3', cls=Host, ip='10.0.0.3', defaultRoute=None,mac='00:00:00:00:00:03')
        h10 = net.addHost('h10', cls=Host, ip='10.0.0.10', defaultRoute=None,mac='00:00:00:00:00:10')
        h2 = net.addHost('h2', cls=Host, ip='10.0.0.2', defaultRoute=None,mac='00:00:00:00:00:02')
        h5 = net.addHost('h5', cls=Host, ip='10.0.0.5', defaultRoute=None,mac='00:00:00:00:00:05')
        h1 = net.addHost('h1', cls=Host, ip='10.0.0.1', defaultRoute=None,mac='00:00:00:00:00:01')
        h11 = net.addHost('h11', cls=Host, ip='10.0.0.11', defaultRoute=None,mac='00:00:00:00:00:11')
        h6 = net.addHost('h6', cls=Host, ip='10.0.0.6', defaultRoute=None,mac='00:00:00:00:00:06')
        h4 = net.addHost('h4', cls=Host, ip='10.0.0.4', defaultRoute=None,mac='00:00:00:00:00:04')
        h7 = net.addHost('h7', cls=Host, ip='10.0.0.7', defaultRoute=None,mac='00:00:00:00:00:07')
        h13 = net.addHost('h13', cls=Host, ip='10.0.0.13', defaultRoute=None,mac='00:00:00:00:00:13')
        h9 = net.addHost('h9', cls=Host, ip='10.0.0.9', defaultRoute=None,mac='00:00:00:00:00:09')
        h12 = net.addHost('h12', cls=Host, ip='10.0.0.12', defaultRoute=None,mac='00:00:00:00:00:12')
        h8 = net.addHost('h8', cls=Host, ip='10.0.0.8', defaultRoute=None,mac='00:00:00:00:00:08')
    
        info( '*** Add links\n')
        net.addLink(h1, s1)
        net.addLink(h2, s2)
        net.addLink(h3, s3)
        net.addLink(h4, s4)
        net.addLink(h5, s5)
        net.addLink(h6, s6)
        net.addLink(h7, s7)
        net.addLink(h8, s8)
        net.addLink(h9, s9)
        net.addLink(h10, s10)
        net.addLink(h11, s11)
        net.addLink(h12, s12)
        net.addLink(h13, s13)
        net.addLink(s2, s1)
        net.addLink(s2, s3)
        net.addLink(s3, s4)
        net.addLink(s2, s5)
        net.addLink(s5, s7)
        net.addLink(s5, s6)
        net.addLink(s5, s8)
        net.addLink(s5, s9)
        net.addLink(s8, s9)
        net.addLink(s9, s11)
        net.addLink(s9, s10)
        net.addLink(s10, s11)
        net.addLink(s3, s10)
        net.addLink(s3, s13)
        net.addLink(s10, s13)
        net.addLink(s11, s12)
        net.addLink(s12, s13)
    
        ## start switch
        for i in range(1,7):
            net.get("s{}".format(i)).start([])
    
        info( '*** Starting network\n')
        net.start()
    
        #into the interactive mode
        CLI(net)
        net.stop()
    
    if __name__ == '__main__':
        setLogLevel( 'info' )
        myNetwork()
    

    其中,控制器c被设置为RemoteController,方便下一步与Ryu进行连接。
    在这里插入图片描述

  2. 使用Ryu连接Mininet中的交换机;
    使用Ryu连接mininet后,结果如下:
    在这里插入图片描述

    Ryu读出了所有的交换机,并发现了34个连接。

  3. 并将拓扑读出来进行可视化展示;
    利用mininet自带的miniedit.py,我们可以直观的实现mininet的静态可视化,如图所示:
    在这里插入图片描述

  4. 在Ryu上实现深度优先遍历算法,并找出任意两个主机间的最短路和最长路;
    使用DFS可以找到任意两个交换机之间的所有路径,从而通过遍历,很容易找到任意两个主机(交换机)之间的最短路和最长路。
    实现DFS的递归算法如下:

    	def findpath(self,src_sw,dst_sw,sign,onepath,allpaths):
    	       if src_sw==dst_sw:
    	           #print(onepath)
    	           allpaths.append(onepath.copy())
    	           #print(allpaths)
    	       else:
    	           for u in self.switches:
    	               if (self.get_adjacent(src_sw,u) is not None)and(sign[u]!=1):
    	                       sign[u]=1
    	                       onepath.append(u)
    	                       
    	                       self.findpath(u,dst_sw,sign,onepath,allpaths)
    	                           
    	                       onepath.remove(u)
    	                       sign[u]=0
    

    返回值为一个二维列表,里面存储了从源交换机到目的交换机的所有路径(用队列存储)

  5. 使用最长路来配置任意两个主机间的通信连接
    再得到所有路径之后,通过遍历找到最长路和最短路并打印,再将最长路的路径存储到record中,进行下一步的路径配置

    	def shortest_path(self,src_sw,dst_sw,first_port,last_port):
    	        self.logger.info("topo calculate the shortest path from ---{}-{}-------{}-{}".format(first_port,src_sw,dst_sw,last_port))
    	        self.logger.debug("there is {} swithes".format(len(self.switches)))
    	        
    	        sign={}
    	        for s in self.switches:
    	            sign[s]=0
    	        sign[src_sw]=1
    	        
    	        onepath=[]
    	        onepath.append(src_sw)
    	
    	        allpaths=[]
    	        self.findpath(src_sw,dst_sw,sign,onepath,allpaths)
    	        #print(allpaths)
    	        print("paths num is: {}".format(len(allpaths)))
    	        print("all paths:")
    	        sp=allpaths[0]
    	        lp=allpaths[0]
    	        for i in allpaths:
    	            if(len(i)>len(lp)):
    	                lp=i
    	            if(len(i)<len(sp)):
    	                sp=i
    	            print(i)
    	
    	        print("the shortest path is: ")
    	        print(sp)
    	        print("the longest path is: ")
    	        print(lp)
    	
    	
    	        if src_sw==dst_sw:
    	                path=[src_sw]
    	        else:
    	                path=lp
    	            
    	        record=[]
    	        inport=first_port
    	
    	            # s1 s2; s2:s3, sn-1  sn
    	        for s1,s2 in zip(path[:-1],path[1:]):
    	                # s1--outport-->s2
    	            outport,_=self.get_adjacent(s1,s2)
    	                
    	            record.append((s1,inport,outport))
    	            inport,_=self.get_adjacent(s2,s1)
    	            
    	        record.append((dst_sw,inport,last_port))
    	        
    	        #we find a path
    	        # (s1,inport,outport)->(s2,inport,outport)->...->(dest_switch,inport,outport)
    	        return record
    

    返回值record为最长路(一维列表),传到路径配置中
    实现效果如图:
    以h1 ping -c 1 h9为例:(拓扑序号命名见前面的拓扑图)
    打印出h9到h1所有路径和最长路、最短路,并配置最长路:
    在这里插入图片描述

    以pingall为例:
    在这里插入图片描述
    在这里插入图片描述
    所有的交换机均ping通,无掉包,且均按最长路径配置
    输出所有的路径:
    在这里插入图片描述

  6. 将配置通的业务在可视化平台上进行展示
    利用networkx,将拓扑图与最长路径(配置的路径)进行可视化展示:
    以h1 ping -c 1 h9为例:(拓扑序号命名见前面的拓扑图)
    在这里插入图片描述
    图片样式是networkx随机生成的,但拓扑是不会变的,即从h1到h9的路径就如图中红色的路径所示。
    实现networkx的部分代码如下:

    #draw
    def draw_graph(graph,path):
    
        # extract nodes from graph
    
        nodes = set([n1 for n1, n2 in graph] + [n2 for n1, n2 in graph])
    
        # create networkx graph
    
        G=nx.Graph()
    
        # add nodes
    
        for node in nodes:
    
            G.add_node(node)
    
    
        # add edges
        G.add_edges_from(graph,color='b')
        G.add_edges_from(path,color='r')
    
        #G.add_edges_from(new)
    
    
        # draw graph
    
        edges = G.edges()
        colors = [G[u][v]['color'] for u,v in edges]
    
        nx.draw(G,with_labels=True,edges=edges,edge_color=colors)
    
        # show graph
    
    plt.show()
    
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PPPerry_1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值