php面向对象的权限控制

   权限控制符共有三种类型:

  • public:公共的,类内类外均可访问.

  • protected:保护的,只有在本类和子类的内部可以访问.

  • private:私有的,只有在本类的内部可以访问.

    <?php
    class people1{
    	public $age=6;
    }
    $a=new people1();
    echo $a->age,'<br/>';
    
    class People2{
    	private $money=1000;
    	public function ShowMoney(){
    		return $this->money * 0.8;
    	}
    }
    $lisi=new People2();
    //echo $lisi->money;private是私有的,调用位置在people外,因此不能调用.
    echo $lisi->ShowMoney(),'<br/>';
    
    class Human{
    	private $money=1000;
    	private $bank=2000;
    	public function getBank($num){
    		$this->bank-=$num;
    		return $num;
    	}
    		public function send($much){
    			if($much>$this->money+$this->bank){
    				echo '没有那么多钱';
    				return false;
    			}else if($much>$this->money){
    				$num=$much-$this->money;
    				$this->money+=$this->getBank($num);
    				$this->money-=$much;
    				return $much;
    			}else{
    				$this->money-=$much;
    				return $much;
    			}
    }
    	public function showMoney(){
    		return $this->money;
    		}
    		public function showBank(){
    		return $this->bank;
    		}
    }
    $lisi=new Human();
    $m=$lisi->send(300);
    if($m){
    	echo'借了',$m,'元<br/>';
    	echo'零钱还剩下',$lisi->showMoney(),'元<br/>';
    	echo'银行还剩下',$lisi->showBank(),'元<br/>';
    }
    $m=$lisi->send(2000);
    if($m){
    	echo'借了',$m,'元<br/>';
    	echo'零钱还剩下',$lisi->showMoney(),'元<br/>';
    	echo'银行还剩下',$lisi->showBank(),'元<br/>';
    }
    $m=$lisi->send(1000);
    if($m){
    	echo'借了',$m,'元<br/>';
    	echo'零钱还剩下',$lisi->showMoney(),'元<br/>';
    	echo'银行还剩下',$lisi->showBank(),'元<br/>';
    }
    
    ?>

     

运行结果: 

 

 

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制方法。通过结合数据驱动技术与Koopman算子理论,将非线性系统动态近似为高维线性系统,进而利用递归神经网络(RNN)建模并实现系统行为的精确预测。文中详细阐述了模型构建流程、线性化策略及在预测控制中的集成应用,并提供了完整的Matlab代码实现,便于科研人员复现实验、优化算法并拓展至其他精密控制系统。该方法有效提升了纳米级定位系统的控制精度与动态响应性能。; 适合人群:具备自动控制、机器学习或信号处理背景,熟悉Matlab编程,从事精密仪器控制、智能制造或先进控制算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①实现非线性动态系统的数据驱动线性化建模;②提升纳米定位平台的轨迹跟踪与预测控制性能;③为高精度控制系统提供可复现的Koopman-RNN融合解决方案; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注Koopman观测矩阵构造、RNN训练流程与模型预测控制器(MPC)的集成方式,鼓励在实际硬件平台上验证并调整参数以适应具体应用场景。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值