输入的第一行包含1个正整数n,表示图中共有n个顶点。其中n不超过50。
以后的n行中每行有n个用空格隔开的整数。对于第i行的第j个整数,如果大于0,则表示第i个顶点有指向第j个顶点的有向边,且权值为对应的整数值;如果这个整数为0,则表示没有i指向j的有向边。当i和j相等的时候,保证对应的整数为0。
输出
共有n行,每行有n个整数,表示源点至每一个顶点的最短路径长度。如果不存在从源点至相应顶点的路径,输出-1。对于某个顶点到其本身的最短路径长度,输出0。
请在每个整数后输出一个空格,并请注意行尾输出换行。
样例输入
4
0 3 0 1
0 0 4 0
2 0 0 0
0 0 1 0
样例输入
4
0 3 0 1
0 0 4 0
2 0 0 0
0 0 1 0
#include <iostream>
#include <algorithm>
using namespace std;
#define INF (1 << 21)
static const int MAX = 500;
int d[MAX][MAX]; //最小距离
int V,s;
void floyd(){
for(int k = 0; k < V; k++){
for(int i = 0; i < V; i++){
for(int j = 0; j < V; j++){
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
}
}
}
int main(){
cin >> V;
int x;
for(int i = 0; i < V; i++){
for(int j = 0; j < V; j++){
cin >> x;
if(x == 0&&i!=j){
d[i][j] = INF;
}
else if(x == 0&&i==j)
d[i][j] = 0;
else{
d[i][j] = x;
}
}
}
floyd();
for(int i = 0; i < V; i++){
for(int j = 0; j < V; j++){
cout << (d[i][j] == INF ? -1 : d[i][j]) <<' ';
}
cout << endl;
}
return 0;
}