Floyd

蓝桥杯Floyd算法

输入的第一行包含1个正整数n,表示图中共有n个顶点。其中n不超过50。

以后的n行中每行有n个用空格隔开的整数。对于第i行的第j个整数,如果大于0,则表示第i个顶点有指向第j个顶点的有向边,且权值为对应的整数值;如果这个整数为0,则表示没有i指向j的有向边。当i和j相等的时候,保证对应的整数为0。

输出

共有n行,每行有n个整数,表示源点至每一个顶点的最短路径长度。如果不存在从源点至相应顶点的路径,输出-1。对于某个顶点到其本身的最短路径长度,输出0。
请在每个整数后输出一个空格,并请注意行尾输出换行。

样例输入
4
0 3 0 1
0 0 4 0
2 0 0 0
0 0 1 0

样例输入
4
0 3 0 1
0 0 4 0
2 0 0 0
0 0 1 0

#include <iostream>
#include <algorithm>
using namespace std;
#define INF (1 << 21) 
static const int MAX = 500;
int d[MAX][MAX];    //最小距离
int V,s;
void floyd(){
    for(int k = 0; k < V; k++){
        for(int i = 0; i < V; i++){
            for(int j = 0; j < V; j++){
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
            }
        }
    }
}
int main(){
    cin >> V;
    int x;
    for(int i = 0; i < V; i++){
        for(int j = 0; j < V; j++){        
            cin >> x;
            if(x == 0&&i!=j){
                d[i][j] = INF;
            }
            else if(x == 0&&i==j)
            d[i][j] = 0;
            else{
                d[i][j] = x;
            }
        }
    }
    floyd();
    for(int i = 0; i < V; i++){
        for(int j = 0; j < V; j++){
            cout << (d[i][j] == INF ? -1 : d[i][j]) <<' ';
        }
        cout << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王子y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值