L2-029 特立独行的幸福(很绕人的模拟题详解)

对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行的幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行的幸福数,其独立性为 2×4=8。

另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。

本题就要求你编写程序,列出给定区间内的所有特立独行的幸福数和它的独立性。

输入格式:
输入在第一行给出闭区间的两个端点:1<A<B≤10
​4
​​ 。

输出格式:
按递增顺序列出给定闭区间 [A,B] 内的所有特立独行的幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。

如果区间内没有幸福数,则在一行中输出 SAD。

输入样例 1:
10 40
输出样例 1:
19 8
23 6
28 3
31 4
32 3
注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行的幸福数。
输入样例 2:
110 120
输出样例 2:
SAD

#include<bits/stdc++.h>
using namespace std;
int c[10010]={0};
bool isprime(int t){
	if(t<=1)return false;
	for(int i=2;i<=t/i;i++){
		if(t%i==0)
		return false;
	}
	return true;
}
int getnum(int num){
	int sum=0;
	while(num){
		sum+=(num%10)*(num%10);
		num/=10;
	}
	return sum;
}
int main(){
	int A,B;
	cin>>A>>B;
	int flag1[10010];//标记所有点途中经历的点
	for(int i=A;i<=B;i++){
		int cnt=0;
		int flag2[10010]={0};//标记i点途中经历的点
		int num=i;
		while(num!=1){
			num=getnum(num);
			flag1[num]=1;//判断这个数会不会经历重复的数
			cnt++;
			if(flag2[num]==1){
				flag1[i]=1;//i这个点肯定不行
				break;
			}else
			flag2[num]=1;
		}
		if(num==1){	
          c[i]=cnt;
          if(isprime(i))
          c[i]*=2;
		}
	}
	bool f=false;
	for(int i=A;i<=B;i++){
		if(c[i]!=0&&flag1[i]==0){ 是幸福数且没有被经过,即特立独行的幸福数
			f=true;
			cout<<i<<' '<<c[i]<<endl;
		}
	}
	if(f==false)cout<<"SAD"<<endl;//一个特立独行的幸福数没有
	return 0;
}
#include<bits/stdc++.h>
using namespace std;
const int maxn=10010;
int flagn[maxn]={0};
int getnum(int x){
	int sum = 0;
	while(x > 0){
		sum += (x % 10) * (x % 10);
		x /= 10;
	}
	return sum;
}
bool isprime(int x){
	if(x == 1 || x == 0) return false;
	for(int i = 2; i <= sqrt(x); i++)
		if(x % i == 0) return false;
	return true;
}
vector<int> v1,v; 
int main(){
    int a,b;
    cin>>a>>b;
    for(int i=a;i<=b;i++){
        int x=i;
        int sum=0;
        int flag[maxn]={0};
        while(1){
            x=getnum(x);
            sum++;
            if(x==1){
                if(isprime(i))sum*=2;
                v1.push_back(i);
                v.push_back(sum);
                break;
            }
            if(flag[x])break;
            flag[x]=1;
            flagn[x]=1;
        } 
    }
    if(v1.size()==0){
    	cout<<"SAD"<<endl;
    	return 0;
    }
    for(int i=0;i<v1.size();i++){
        if(!flagn[v1[i]])
        cout<<v1[i]<<' '<<v[i]<<endl;
    }
    return 0;
}
7-6 特立独行幸福 (25分) 对一个十进制的各位数字一次平方和称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该幸福。1 是一个幸福。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福。显然,在一个幸福迭代到 1 的过程中经过的数字都是幸福,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行幸福,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福的个。如果这个还是个素,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行幸福,其独立性为 2×4=8。 另一方面,如果一个大于1的数字经过迭代后进入了死循环,那这个就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。 本题就要求你编写程序,列出给定区间内的所有特立独行幸福和它的独立性。 输入格式: 输入在第一行给出闭区间的两个端点:1<A<B≤10 ​4 ​​ 。 输出格式: 按递增顺序列出给定闭区间 [A,B] 内的所有特立独行幸福和它的独立性。每对数字占一行,数字间以 1 个空格分隔。 如果区间内没有幸福,则在一行中输出 SAD。 输入样例 1: 10 40 输出样例 1: 19 8 23 6 28 3 31 4 32 3 注意:样例中,10、13 也都是幸福,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行幸福。 输入样例 2: 110 120 输出样例 2: SAD
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王子y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值