对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行的幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行的幸福数,其独立性为 2×4=8。
另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。
本题就要求你编写程序,列出给定区间内的所有特立独行的幸福数和它的独立性。
输入格式:
输入在第一行给出闭区间的两个端点:1<A<B≤10
4
。
输出格式:
按递增顺序列出给定闭区间 [A,B] 内的所有特立独行的幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。
如果区间内没有幸福数,则在一行中输出 SAD。
输入样例 1:
10 40
输出样例 1:
19 8
23 6
28 3
31 4
32 3
注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行的幸福数。
输入样例 2:
110 120
输出样例 2:
SAD
#include<bits/stdc++.h>
using namespace std;
int c[10010]={0};
bool isprime(int t){
if(t<=1)return false;
for(int i=2;i<=t/i;i++){
if(t%i==0)
return false;
}
return true;
}
int getnum(int num){
int sum=0;
while(num){
sum+=(num%10)*(num%10);
num/=10;
}
return sum;
}
int main(){
int A,B;
cin>>A>>B;
int flag1[10010];//标记所有点途中经历的点
for(int i=A;i<=B;i++){
int cnt=0;
int flag2[10010]={0};//标记i点途中经历的点
int num=i;
while(num!=1){
num=getnum(num);
flag1[num]=1;//判断这个数会不会经历重复的数
cnt++;
if(flag2[num]==1){
flag1[i]=1;//i这个点肯定不行
break;
}else
flag2[num]=1;
}
if(num==1){
c[i]=cnt;
if(isprime(i))
c[i]*=2;
}
}
bool f=false;
for(int i=A;i<=B;i++){
if(c[i]!=0&&flag1[i]==0){ 是幸福数且没有被经过,即特立独行的幸福数
f=true;
cout<<i<<' '<<c[i]<<endl;
}
}
if(f==false)cout<<"SAD"<<endl;//一个特立独行的幸福数没有
return 0;
}
#include<bits/stdc++.h>
using namespace std;
const int maxn=10010;
int flagn[maxn]={0};
int getnum(int x){
int sum = 0;
while(x > 0){
sum += (x % 10) * (x % 10);
x /= 10;
}
return sum;
}
bool isprime(int x){
if(x == 1 || x == 0) return false;
for(int i = 2; i <= sqrt(x); i++)
if(x % i == 0) return false;
return true;
}
vector<int> v1,v;
int main(){
int a,b;
cin>>a>>b;
for(int i=a;i<=b;i++){
int x=i;
int sum=0;
int flag[maxn]={0};
while(1){
x=getnum(x);
sum++;
if(x==1){
if(isprime(i))sum*=2;
v1.push_back(i);
v.push_back(sum);
break;
}
if(flag[x])break;
flag[x]=1;
flagn[x]=1;
}
}
if(v1.size()==0){
cout<<"SAD"<<endl;
return 0;
}
for(int i=0;i<v1.size();i++){
if(!flagn[v1[i]])
cout<<v1[i]<<' '<<v[i]<<endl;
}
return 0;
}