在平面上有一些二维的点阵。
这些点的编号就像二维数组的编号一样,从上到下依次为第 11 至第 nn 行,从左到右依次为第 11 至第 mm 列,每一个点可以用行号和列号来表示。
现在有个人站在第 11 行第 11 列,要走到第 nn 行第 mm 列。
只能向右或者向下走。
注意,如果行号和列数都是偶数,不能走入这一格中。
问有多少种方案。
输入格式
输入一行包含两个整数 n,mn,m。
输出格式
输出一个整数,表示答案。
数据范围
1≤n,m≤301≤n,m≤30
输入样例1:
3 4
输出样例1:
2
输入样例2:
6 6
输出样例2:
0
//会超时
#include <stdio.h>
int n, m;
int ans;
void dfs(int x, int y) // 搜索 (x, y)
{
if(x>n||y>m)return ;
if (x & 1 || y & 1) // 如果至少存在一个点是奇数,那么搜索该点,否则跳过
{
if (x == n && y == m) // 如果搜到点 (n, m) 了
{
ans ++ ; // ans ++ 并返回
return ;
}
dfs(x + 1, y);
dfs(x, y + 1);
}
}
int main()
{
scanf("%d%d", &n, &m);
dfs(1, 1); // 从点 (1, 1) 开始搜索
printf("%d\n", ans);
return 0;
}
#include <stdio.h>
int n, m;
int f[31][31]; // 记忆化数组
int dfs(int x, int y) // 搜索点 (x, y),并返回从点 (x, y) 开始,能到点 (n, m) 的路径数量
{
if (x & 1 || y & 1)
{
if (f[x][y]) return f[x][y]; // 如果该点已经被搜索过,那么不再处理
// 否则说明没搜索过,需要搜索一遍
if (x < n) f[x][y] += dfs(x + 1, y);
if (y < m) f[x][y] += dfs(x, y + 1);
}
return f[x][y];
// 最后返回 f[x][y] 即可。如果 x, y 都是偶数,那么 f[x][y] 就没被处理过,必然为 0,可以不特判。
}
int main()
{
scanf("%d%d", &n, &m);
f[n][m] = n & 1 || m & 1; // 这里要特判下 n, m 是否都为偶数
printf("%d\n", dfs(1, 1));
return 0;
}
#include<bits/stdc++.h>
using namespace std;
const int N = 35;
int f[N+1][N+1];
int n,m;
void init(){
f[1][1]=1;
for(int i=1;i<=N;i++){
for(int j=1;j<=N;j++){
if(i==1&&j==1) continue;
if(i&1||j&1) //行列至少有一个为奇数
f[i][j]=f[i-1][j]+f[i][j-1];
}
}
}
int main(){
cin>>n>>m;
init();
cout<<f[n][m]<<endl;
return 0;
}