金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。
更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。
今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N元。
于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。
他还从因特网上查到了每件物品的价格(都是整数元)。
他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,…,jkj1,j2,…,jk,则所求的总和为:
v[j1]∗w[j1]+v[j2]∗w[j2]+…+v[jk]∗w[jk]
请你帮助金明设计一个满足要求的购物单。
输入格式
输入文件的第1行,为两个正整数N和m,用一个空格隔开。(其中N表示总钱数,m为希望购买物品的个数)
从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有2个非负整数v和p。(其中v表示该物品的价格,p表示该物品的重要度)
输出格式
输出文件只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(数据保证结果不超过100000000)。
数据范围
1≤N<30000,
1≤m<25,
0≤v≤10000,
1≤p≤5
输入样例:
1000 5
800 2
400 5
300 5
400 3
200 2
输出样例:
3900
将原问题做如下转化
总钱数相当于背包总容量;
每件物品的价格相当于体积;
每件物品的价格乘以重要度相当于价值;
那么就变成了经典的01背包问题
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 30010;
int n, m;
int f[N];
int main()
{
cin >> m >> n;
for (int i = 0; i < n; i ++ )
{
int v, w;
cin >> v >> w;
w *= v;
for (int j = m; j >= v; j -- )
f[j] = max(f[j], f[j - v] + w);
}
cout << f[m] << endl;
return 0;
}