小明几乎每天早晨都会在一家包子铺吃早餐。
他发现这家包子铺有 N 种蒸笼,其中第 i 种蒸笼恰好能放 Ai 个包子。
每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买 X 个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有 X 个包子。
比如一共有 3 种蒸笼,分别能放 3、4 和 5 个包子。
当顾客想买 11 个包子时,大叔就会选 2 笼 3 个的再加 1 笼 5 个的(也可能选出 1 笼 3 个的再加 2 笼 4 个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。
比如一共有 3 种蒸笼,分别能放 4、5 和 6 个包子。
而顾客想买 7 个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入格式
第一行包含一个整数 N。
接下来 N 行,每行包含一个整数 Ai。
输出格式
输出一个整数代表答案。
如果凑不出的数目有无限多个,输出INF。
数据范围
1≤N≤100,
1≤Ai≤100
输入样例1:
2
4
5
输出样例1:
6
输入样例2:
2
4
6
输出样例2:
INF
样例解释
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
题目一看,是个 组合问题,是完全背包问题的变形:有几个物品,
每个物品无限个,每个物品选任意个,能否凑到某个重量。
但是,题目说会出现有无限个数被凑不出来的, 说明这些数的gcd不是1。
这里用到裴蜀定理 ,任意两个数的组合必定是他们gcd的任意两个数的
组合必定是他们gcd的倍数,同样可以推广到更多数:如果这些数的gcd是d,
那么他们的组合是d的倍数,如果d不是1,那么必然有无限个数无法被组合出来。
所以,要先写个欧几里得算法,两两求下gcd,看gcd是否大于1。所以
,要先写个欧几里得算法,两两求下gcd,看gcd是否大于1。
欧几里得算法:gcd(a,b)=gcd(b,a%b)。当余数为0时,当前算式的
除数就是a和b的gcd。欧几里得算法:gcd(a,b)=gcd(b,a%b)。
当余数为0时,当前算式的除数就是a和b的gcd。
那么,gcd为1呢?最大不能表示出来的数必定有个上界,
因为两个数a,b(当gcd=1时),最大不能表示出来的那么,gcd为1呢
?最大不能表示出来的数必定有个上界,因为两个数a,b(当gcd=1时)
,最大不能表示出来的数是:(a−1)(b−1)−1
。当数字更多的时候,这个上界必然更小(可选的数字变多了),
而99和98是100内最大的互质的数,所以这个上界选择10000。互质的数,
所以这个上界选择10000。
那么下面的事情就是看这么多数中有多少个不能被组合出来,
回到了刚开始分析的完全背包问题:
1.状态定义:
dp(i,j)表示前选i项物品任意个,重量为j,属性为能否达到重量j(true/false)
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 10010;
int a[110];
bool f[110][N];
int gcd(int a, int b)
{
return b ? gcd(b, a % b) : a;
}
int main()
{
int n;
scanf("%d", &n);
int d = 0;
for (int i = 1; i <= n; i ++ )
{
scanf("%d", &a[i]);
d = gcd(d, a[i]);
}
if (d != 1) puts("INF");/有无数个数不能被凑出来
else
{
f[0][0] = true;
for (int i = 1; i <= n; i ++ )
for (int j = 0; j < N; j ++ )
{
f[i][j] = f[i - 1][j];
if (j >= a[i]) f[i][j] |= f[i][j - a[i]];
}
int res = 0;
for (int i = 0; i < N; i ++ )
if (!f[n][i])
res ++ ;
printf("%d\n", res);
}
return 0;
}
//一维优化
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 10010;
int a[110];
bool f[N];
int gcd(int a, int b)
{
return b ? gcd(b, a % b) : a;
}
int main()
{
int n;
scanf("%d", &n);
int d = 0;
for (int i = 1; i <= n; i ++ )
{
scanf("%d", &a[i]);
d = gcd(d, a[i]);
}
if (d != 1) puts("INF");//有无数个数不能被凑出来
else
{
f[0] = true;
for (int i = 1; i <= n; i ++ )
for (int j = a[i]; j < N; j ++ )
{
f[j] |= f[j];
f[j] |= f[j - a[i]];
}
int res = 0;
for (int i = 0; i < N; i ++ )
if (!f[i])
res ++ ;
printf("%d\n", res);
}
return 0;
}