牛之关系谱(DP)

农夫约翰正在考虑买进一批新的牛群。

在这个新的牛群中,每头母牛都会生两个孩子。

牛的关系可以用一个包含 N 个节点的二叉树来表示,此二叉树应满足下列性质:

每个节点的子节点数为 0 或 2。
树的高度等于 K。树的高度是指从根节点到任一叶子节点的最长路径上的节点数。叶子节点是指没有子节点的节点。
请问,共有多少种可能的谱系结构?

换句话说,共有多少种满足上述性质的 N 个节点的二叉树?

请输出对 9901 取模后的答案。

输入格式
共一行,包含两个整数 N 和 K。

输出格式
共一行,包含一个整数,表示对 9901 取模后的答案。

数据范围
3≤N<200,
1<K<100
输入样例:
5 3
输出样例:
2
样例解释
两种可能的二叉树结构如下:

           @                   @      
          / \                 / \
         @   @               @   @
        / \                     / \
       @   @                   @   @
思路:
此题关键在于树的深度等于k不好求,而小于等于k很好求,所以转化为求小于
k的减去小于等于k-1的

状态表示:

f[i][j]:i个点可以组成深度小于等于k的树的方案数
状态计算:

枚举所有左儿子可能个数,从1到i-2(至少剩下一个根节点和右儿子),左右
数的种类相乘

f[i][j] += f[k][j - 1] * f[i - k - i][j - 1]

计算状态转移时其实不用管一个状态实际存在不存在,因为我们边界初始化时,
初始化的是实际可以用到的,也就是实际存在的,不存在的状态在计算中一直
是0,所以不影响
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 210, M = 110, MOD = 9901;

int n, m;
int f[N][M];//i个点可以组成深度小于等于j的树的方案数

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= m; i ++ ) f[1][i] = 1;
    
    for (int i = 2; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            for (int k = 1; k <= i - 2; k ++ )
                f[i][j] =(f[i][j] + f[k][j - 1] * f[i - 1 - k][j - 1]) % MOD;

    cout << (f[n][m] - f[n][m-1] + MOD)%MOD << endl;

    return 0;
}


已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 鲸 设计师:meimeiellie 返回首页