考虑到安全指数是一个较大范围内的整数、小菜很可能搞不清楚自己是否真的安全,顿顿决定设置一个阈值 θ,以便将安全指数 y 转化为一个具体的预测结果——“会挂科”或“不会挂科”。
因为安全指数越高表明小菜同学挂科的可能性越低,所以当 y≥θy≥θ 时,顿顿会预测小菜这学期很安全、不会挂科;反之若 y<θ ,顿顿就会劝诫小菜:“你期末要挂科了,勿谓言之不预也。”
那么这个阈值该如何设定呢?
顿顿准备从过往中寻找答案。
具体来说,顿顿评估了 m 位同学上学期的安全指数,其中第 i(1≤i≤m)位同学的安全指数为 yi,是一个 [0,108] 范围内的整数;同时,该同学上学期的挂科情况记作 resulti∈{0,1},其中 0 表示挂科、1 表示未挂科。
相应地,顿顿用 predictθ(y)predictθ(y) 表示根据阈值 θθ 将安全指数 yy 转化为的具体预测结果。
如果 predictθ(yj)predictθ(yj) 与 resultjresultj 相同,则说明阈值为 θθ 时顿顿对第 jj 位同学是否挂科预测正确;不同则说明预测错误。
predictθ(y)={0 (y<θ)1 (y≥θ)
predictθ(y)={0 (y<θ)1 (y≥θ)
最后,顿顿设计了如下公式来计算最佳阈值 θ∗θ∗:
θ∗=maxargmaxθ∈yi∑j=1m(predictθ(yj)==resultj)
θ∗=maxargmaxθ∈yi∑j=1m(predictθ(yj)==resultj)
该公式亦可等价地表述为如下规则:
最佳阈值仅在 yi 中选取,即与某位同学的安全指数相同;
按照该阈值对这 m 位同学上学期的挂科情况进行预测,预测正确的次数最多(即准确率最高);
多个阈值均可以达到最高准确率时,选取其中最大的。
输入格式
输入的第一行包含一个正整数 m。
接下来输入 mm 行,其中第 i(1≤i≤m)行包括用空格分隔的两个整数 yiyi 和 resulti,含义如上文所述。
输出格式
输出一个整数,表示最佳阈值 θ∗。
数据范围
70% 的测试数据保证 m≤200;
全部的测试数据保证 2≤m≤105。
输入样例1:
6
0 0
1 0
1 1
3 1
5 1
7 1
输出样例1:
3
样例1解释
按照规则一,最佳阈值的选取范围为 {0,1,3,5,7}。
θ=0 时,预测正确次数为 4;
θ=1 时,预测正确次数为 5;
θ=3 时,预测正确次数为 5;
θ=5 时,预测正确次数为 4;
θ=7 时,预测正确次数为 3。
阈值选取为 11 或 33 时,预测准确率最高;所以按照规则二,最佳阈值的选取范围缩小为 {1,3}。
依规则三,θ∗=max{1,3}=3。
输入样例2:
8
5 1
5 0
5 0
2 1
3 0
4 0
100000000 1
1 0
输出样例2:
100000000
#include <iostream>
#include <cstring>
#include <algorithm>
#define x first
#define y second
using namespace std;
const int N = 100010;
typedef pair<int, int> PII;
PII a[N];
int n;
int s[2][N];//s[0][i]表示1到i中0的个数
int ans;
int main()
{
cin >> n;
for (int i = 1; i <= n; i ++ ){
cin>>a[i].x>>a[i].y;
}
sort(a+1,a+1+n);
for (int i = 0; i <= 1; i ++ ){
for (int j = 1; j <= n; j ++ ) {
s[i][j]=s[i][j-1]+(a[j].y==i);
}
}
int cnt=0;
for (int i = 1; i <= n; i ++ ){
int t=0;
t=s[0][i-1]+s[1][n]-s[1][i-1];
if(t>=cnt){//重复的数字只处理第一个
cnt=t;
ans=a[i].x;
}
while(i+1<=n&&a[i+1].x==a[i].x)i++;
}
cout<<ans<<endl;
return 0;
}